Sentiment Mining and Analysis over Text Corpora via Complex Deep Learning Naural Architectures

Teresa Alcamo, A. Cuzzocrea, G. Pilato, Daniele Schicchi
{"title":"Sentiment Mining and Analysis over Text Corpora via Complex Deep Learning Naural Architectures","authors":"Teresa Alcamo, A. Cuzzocrea, G. Pilato, Daniele Schicchi","doi":"10.26421/jdi2.4-4","DOIUrl":null,"url":null,"abstract":"We analyze and compare five deep-learning neural architectures to manage the problem of irony and sarcasm detection for the Italian language. We briefly analyze the model architectures to choose the best compromise between performances and complexity. The obtained results show the effectiveness of such systems to handle the problem by achieving 93\\% of F1-Score in the best case. As a case study, we also illustrate a possible embedding of the neural systems in a cloud computing infrastructure to exploit the computational advantage of using such an approach in tackling big data.","PeriodicalId":32592,"journal":{"name":"Journal of Artificial Intelligence and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/jdi2.4-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We analyze and compare five deep-learning neural architectures to manage the problem of irony and sarcasm detection for the Italian language. We briefly analyze the model architectures to choose the best compromise between performances and complexity. The obtained results show the effectiveness of such systems to handle the problem by achieving 93\% of F1-Score in the best case. As a case study, we also illustrate a possible embedding of the neural systems in a cloud computing infrastructure to exploit the computational advantage of using such an approach in tackling big data.
基于复杂深度学习自然架构的文本语料库情感挖掘与分析
我们分析和比较了五种深度学习神经架构来管理意大利语的反讽和讽刺检测问题。我们简要地分析了模型架构,以选择性能和复杂性之间的最佳折衷。所获得的结果表明,该系统在最佳情况下可以达到F1-Score的93%,从而有效地处理问题。作为案例研究,我们还说明了在云计算基础设施中嵌入神经系统的可能性,以利用在处理大数据时使用这种方法的计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信