A shape memory alloy spring driven soft crawling robot with feet of constant curvature

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tonghui Tang, Kecai Xie, Chengyang Li, Shouyuan Sun, Zhongjing Ren, Jia-shan Yuan, Peng Yan
{"title":"A shape memory alloy spring driven soft crawling robot with feet of constant curvature","authors":"Tonghui Tang, Kecai Xie, Chengyang Li, Shouyuan Sun, Zhongjing Ren, Jia-shan Yuan, Peng Yan","doi":"10.1177/1045389x231182740","DOIUrl":null,"url":null,"abstract":"Soft crawling robots have attracted considerable attentions due to their merits of flexibility, safety, cost, and their unique applications that are not available for the rigid robots. However, poor precision resulting from the strongly nonlinear reconfiguration prevents such soft robots from wider applications. This paper reported a novel SMA spring driven soft crawling robot with feet of constant curvature, and the constant height of the feet during crawling enabled effective alleviation of the nonlinearity of the robotic reconstruction. An analytical static model for the step length of the robot’s crawling gait was built based on 11 independent design parameters, and the influential significance of each parameter was parametrically studied based on the static model. These parameters were then qualitatively classified as strong, medium, and weak factors based on their influences on the theoretical step length of the crawling robot, among which the minimum and the maximum bending angles and the length of the silicone body functioned as the dominant factors. This work provides an efficient approach to the design, prediction, evaluation, and optimization of such soft crawling robots for diverse application surroundings.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"70 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x231182740","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Soft crawling robots have attracted considerable attentions due to their merits of flexibility, safety, cost, and their unique applications that are not available for the rigid robots. However, poor precision resulting from the strongly nonlinear reconfiguration prevents such soft robots from wider applications. This paper reported a novel SMA spring driven soft crawling robot with feet of constant curvature, and the constant height of the feet during crawling enabled effective alleviation of the nonlinearity of the robotic reconstruction. An analytical static model for the step length of the robot’s crawling gait was built based on 11 independent design parameters, and the influential significance of each parameter was parametrically studied based on the static model. These parameters were then qualitatively classified as strong, medium, and weak factors based on their influences on the theoretical step length of the crawling robot, among which the minimum and the maximum bending angles and the length of the silicone body functioned as the dominant factors. This work provides an efficient approach to the design, prediction, evaluation, and optimization of such soft crawling robots for diverse application surroundings.
一种形状记忆合金弹簧驱动的恒曲率足部软爬行机器人
柔性爬行机器人以其灵活性、安全性、成本低等优点以及刚性爬行机器人所不具备的独特应用而受到广泛关注。然而,由于强非线性重构导致的精度差阻碍了这种软机器人的广泛应用。本文提出了一种新型的SMA弹簧驱动柔性爬行机器人,该机器人的足部为常曲率,在爬行过程中足部高度恒定,可以有效地缓解机器人重构的非线性。基于11个独立的设计参数,建立了机器人爬行步态步长的解析静态模型,并在此基础上对各参数的影响意义进行了参数化研究。根据这些参数对爬行机器人理论步长的影响,定性地将其分为强、中、弱三个因素,其中最大、最小弯曲角和硅胶体长度是主导因素。本研究为柔性爬行机器人在不同应用环境下的设计、预测、评估和优化提供了有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信