The exergy flux of radiative heat transfer for the special case of blackbody radiation

S.E. Wright , M.A. Rosen , D.S. Scott , J.B. Haddow
{"title":"The exergy flux of radiative heat transfer for the special case of blackbody radiation","authors":"S.E. Wright ,&nbsp;M.A. Rosen ,&nbsp;D.S. Scott ,&nbsp;J.B. Haddow","doi":"10.1016/S1164-0235(01)00040-1","DOIUrl":null,"url":null,"abstract":"<div><p>Exergy analysis is a highly effective method of analysis for thermal processes because it provides insight that cannot be obtained from energy analysis alone. In general the field of exergy analysis is both well formulated and well understood. However, the exergy flux, or the maximum work obtainable, from thermal radiation (TR) heat transfer has not been clearly formulated. Several researchers claim that Petela's thermodynamic approach for determining the maximum work obtainable from radiation is irrelevant to the conversion of fluxes because it appears to neglect a number of fundamental issues—issues that are unusual in the context of exergy analysis. In this paper it is shown that Petela's result gives the exergy flux of blackbody radiation (BR) and represents the upper limit to the conversion of solar radiation (SR) approximated as BR. This conclusion is obtained by resolving a number of fundamental questions including that of: inherent irreversibility, definition of the environment, the effect of inherent emission and the effect of concentrating source radiation. Correctly identifying the exergy flux of TR allows the general exergy balance equation for a control volume to be re-stated so that it correctly applies to TR heat transfer. An ideal (reversible) thermal conversion process for BR fluxes is also presented. Finally, exergetic (second-law) efficiencies are presented for common solar energy conversion processes such as single-cell photovoltaics</p></div>","PeriodicalId":100518,"journal":{"name":"Exergy, An International Journal","volume":"2 1","pages":"Pages 24-33"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1164-0235(01)00040-1","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exergy, An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1164023501000401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Exergy analysis is a highly effective method of analysis for thermal processes because it provides insight that cannot be obtained from energy analysis alone. In general the field of exergy analysis is both well formulated and well understood. However, the exergy flux, or the maximum work obtainable, from thermal radiation (TR) heat transfer has not been clearly formulated. Several researchers claim that Petela's thermodynamic approach for determining the maximum work obtainable from radiation is irrelevant to the conversion of fluxes because it appears to neglect a number of fundamental issues—issues that are unusual in the context of exergy analysis. In this paper it is shown that Petela's result gives the exergy flux of blackbody radiation (BR) and represents the upper limit to the conversion of solar radiation (SR) approximated as BR. This conclusion is obtained by resolving a number of fundamental questions including that of: inherent irreversibility, definition of the environment, the effect of inherent emission and the effect of concentrating source radiation. Correctly identifying the exergy flux of TR allows the general exergy balance equation for a control volume to be re-stated so that it correctly applies to TR heat transfer. An ideal (reversible) thermal conversion process for BR fluxes is also presented. Finally, exergetic (second-law) efficiencies are presented for common solar energy conversion processes such as single-cell photovoltaics

黑体辐射特殊情况下辐射传热的能量通量
火能分析是一种非常有效的热过程分析方法,因为它提供了无法从能量分析单独获得的洞察力。总的来说,用能分析领域既得到了很好的表述,也得到了很好的理解。然而,热辐射(TR)传热的火用通量或可获得的最大功尚未得到明确的表述。几位研究人员声称,Petela确定辐射可获得的最大功的热力学方法与通量的转换无关,因为它似乎忽略了一些基本问题-这些问题在火用分析的背景下是不寻常的。本文表明,Petela的结果给出了黑体辐射(BR)的火能通量,并代表了近似为BR的太阳辐射(SR)转换的上限。这一结论是通过解决若干基本问题得出的,这些问题包括:固有的不可逆性、环境的定义、固有发射的影响和源辐射集中的影响。正确地确定TR的火用通量,可以重新表述控制体积的一般火用平衡方程,从而正确地适用于TR的传热。提出了一种理想的(可逆的)BR助熔剂热转化过程。最后,对常见的太阳能转换过程,如单电池光伏,提出了火用(第二定律)效率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信