On least squares discrete Fourier analysis of unequally spaced data

Q4 Mathematics
W. Popiński
{"title":"On least squares discrete Fourier analysis of unequally spaced data","authors":"W. Popiński","doi":"10.4064/am2399-6-2020","DOIUrl":null,"url":null,"abstract":". The problem of discrete Fourier analysis of observations at non-equidistant times using the standard set of complex harmonics exp( i 2 πkt ) , t ∈ R , k = 0 , ± 1 , ± 2 , . . . , and the least squares method is studied. The observation model y j = f ( t j )+ η j , j = 1 , . . . , n , is considered for f ∈ L 2 [0 , 1] , where t j ∈ [( j − 1) /n, j/n ) , and η j are correlated complex valued random variables with E η η j = 0 and E η | η j | 2 = σ 2 η < ∞ . Uniqueness and finite sample properties of the observed function Fourier coefficient estimators ˆ c k , k = 0 , ± 1 , . . . , ± m , where m < n/ (8 π ) , obtained by the least squares method, as well as of the corresponding orthogonal projection estimator ˆ f N ( t ) = (cid:80) mk = − m ˆ c k exp( i 2 πkt ) , where N = 2 m + 1 , are examined and compared with those of the standard Discrete Fourier Transform.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/am2399-6-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

. The problem of discrete Fourier analysis of observations at non-equidistant times using the standard set of complex harmonics exp( i 2 πkt ) , t ∈ R , k = 0 , ± 1 , ± 2 , . . . , and the least squares method is studied. The observation model y j = f ( t j )+ η j , j = 1 , . . . , n , is considered for f ∈ L 2 [0 , 1] , where t j ∈ [( j − 1) /n, j/n ) , and η j are correlated complex valued random variables with E η η j = 0 and E η | η j | 2 = σ 2 η < ∞ . Uniqueness and finite sample properties of the observed function Fourier coefficient estimators ˆ c k , k = 0 , ± 1 , . . . , ± m , where m < n/ (8 π ) , obtained by the least squares method, as well as of the corresponding orthogonal projection estimator ˆ f N ( t ) = (cid:80) mk = − m ˆ c k exp( i 2 πkt ) , where N = 2 m + 1 , are examined and compared with those of the standard Discrete Fourier Transform.
非等间距数据的最小二乘离散傅立叶分析
。用复谐波标准集exp(i 2 πkt), t∈R, k = 0,±1,±2,…对非等距时间观测的离散傅立叶分析问题。,并对最小二乘法进行了研究。观测模型y j = f (t j)+ η j, j = 1,…, n,对于f∈l2[0,1],其中t j∈[(j−1)/n, j/n), η j是相关复值随机变量,且E η η j = 0, E η | η j | 2 = σ 2 η <∞。观测函数傅里叶系数估计量的唯一性和有限样本性质:c k, k = 0,±1,…,±m,其中m < n/ (8 π),以及相应的正交投影估计量,n (t) = (cid:80), mk = - m, c k exp(i 2 πkt),其中n = 2 m + 1,检验并与标准离散傅里叶变换进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信