(Log-)epiperimetric inequality and regularity over smooth cones for almost area-minimizing currents

IF 2 1区 数学
Max Engelstein, L. Spolaor, B. Velichkov
{"title":"(Log-)epiperimetric inequality and regularity over smooth cones for almost area-minimizing currents","authors":"Max Engelstein, L. Spolaor, B. Velichkov","doi":"10.2140/gt.2019.23.513","DOIUrl":null,"url":null,"abstract":"We prove a new logarithmic epiperimetric inequality for multiplicity-one stationary cones with isolated singularity by flowing in the radial direction any given trace along appropriately chosen directions. In contrast to previous epiperimetric inequalities for minimal surfaces (e.g. those of Reifenberg, Taylor and White), we need no a priori assumptions on the structure of the cone (e.g. integrability). Moreover, if the cone is integrable (not only through rotations), we recover the classical epiperimetric inequality. As a consequence we deduce a new $\\varepsilon$-regularity result for almost area-minimizing currents at singular points, where at least one blow-up is a multiplicity-one cone with isolated singularity. This result is similar to the one for stationary varifolds of Leon Simon, but independent from it since almost minimizers do not satisfy any equation.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"28 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2019.23.513","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We prove a new logarithmic epiperimetric inequality for multiplicity-one stationary cones with isolated singularity by flowing in the radial direction any given trace along appropriately chosen directions. In contrast to previous epiperimetric inequalities for minimal surfaces (e.g. those of Reifenberg, Taylor and White), we need no a priori assumptions on the structure of the cone (e.g. integrability). Moreover, if the cone is integrable (not only through rotations), we recover the classical epiperimetric inequality. As a consequence we deduce a new $\varepsilon$-regularity result for almost area-minimizing currents at singular points, where at least one blow-up is a multiplicity-one cone with isolated singularity. This result is similar to the one for stationary varifolds of Leon Simon, but independent from it since almost minimizers do not satisfy any equation.
对于几乎面积最小的电流,光滑锥上的(对数)经验不等式和规则性
我们证明了具有孤立奇点的多重-一个平稳锥的一个新的对数经验不等式,它沿适当选择的方向沿径向任意轨迹流动。与之前的最小曲面的经验不等式(例如Reifenberg, Taylor和White的不等式)相比,我们不需要对锥的结构(例如可积性)进行先验假设。此外,如果圆锥是可积的(不只是通过旋转),我们恢复了经典的经验不等式。因此,我们推导出一个新的$\varepsilon$-正则性结果,对于奇点上几乎面积最小的电流,其中至少有一个爆炸是具有孤立奇点的多重锥。这个结果类似于平稳变量Leon Simon的结果,但是独立于它,因为几乎极小值不满足任何方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信