$\alpha$-Hypergeometric Uncertain Volatility Models and their Connection to 2BSDEs

IF 0.1 Q4 MATHEMATICS
Zaineb Mezdoud, C. Hartmann, M. Remita, O. Kebiri
{"title":"$\\alpha$-Hypergeometric Uncertain Volatility Models and their Connection to 2BSDEs","authors":"Zaineb Mezdoud, C. Hartmann, M. Remita, O. Kebiri","doi":"10.21915/bimas.2021304","DOIUrl":null,"url":null,"abstract":"In this article we propose a α-hypergeometric model with uncertain volatility (UV) where we derive a worst-case scenario for option pricing. The approach is based on the connexion between a certain class of nonlinear partial differential equations of HJB-type (G-HJB equations), that govern the nonlinear expectation of the UV model and that provide an alternative to the difficult model calibration problem of UV models, and second-order backward stochastic differential equations (2BSDEs). Using asymptotic analysis for the G-HJB equation and the equivalent 2BSDE representation, we derive a limit model that provides an accurate description of the worst-case price scenario in cases when the bounds of the UV model are slowly varying. The analytical results are tested by numerical simulations using a deep learning based approximation of the underlying 2BSDE.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"24 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2021304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we propose a α-hypergeometric model with uncertain volatility (UV) where we derive a worst-case scenario for option pricing. The approach is based on the connexion between a certain class of nonlinear partial differential equations of HJB-type (G-HJB equations), that govern the nonlinear expectation of the UV model and that provide an alternative to the difficult model calibration problem of UV models, and second-order backward stochastic differential equations (2BSDEs). Using asymptotic analysis for the G-HJB equation and the equivalent 2BSDE representation, we derive a limit model that provides an accurate description of the worst-case price scenario in cases when the bounds of the UV model are slowly varying. The analytical results are tested by numerical simulations using a deep learning based approximation of the underlying 2BSDE.
$\alpha$-超几何不确定波动率模型及其与2BSDEs的关系
在本文中,我们提出了一个具有不确定波动率(UV)的α-超几何模型,并推导了期权定价的最坏情况。该方法基于一类控制UV模型非线性期望的hjb型非线性偏微分方程(G-HJB方程)与二阶后向随机微分方程(2BSDEs)之间的联系,该方程为UV模型的模型标定难题提供了一种替代方法。利用G-HJB方程的渐近分析和等效的2BSDE表示,我们导出了一个极限模型,该模型在UV模型的边界缓慢变化的情况下,提供了最坏情况下价格情景的准确描述。分析结果通过使用基于深度学习的底层2BSDE近似的数值模拟进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信