On Stability of Linear Estimators in Poisson Noise

Alex Dytso, H. Poor
{"title":"On Stability of Linear Estimators in Poisson Noise","authors":"Alex Dytso, H. Poor","doi":"10.1109/IEEECONF44664.2019.9048782","DOIUrl":null,"url":null,"abstract":"This paper considers estimation of a random variable in Poisson noise. Specifically, the main focus is to assess optimality and near optimality conditions for linear estimators.In the first part of the paper, it is shown that linear estimators are optimal if and only if the underlying prior is a gamma distribution and the dark current parameter is zero.In the second part of the paper, a stability analysis of linear estimators is undertaken. Specifically, it is shown that if an optimal estimator is close to a linear estimator in an Lp,p ≥1 distance, then the underlying prior distribution is approximately gamma in the Lévy metric and the Kolmogorov metric.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"80 1","pages":"670-674"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper considers estimation of a random variable in Poisson noise. Specifically, the main focus is to assess optimality and near optimality conditions for linear estimators.In the first part of the paper, it is shown that linear estimators are optimal if and only if the underlying prior is a gamma distribution and the dark current parameter is zero.In the second part of the paper, a stability analysis of linear estimators is undertaken. Specifically, it is shown that if an optimal estimator is close to a linear estimator in an Lp,p ≥1 distance, then the underlying prior distribution is approximately gamma in the Lévy metric and the Kolmogorov metric.
泊松噪声下线性估计量的稳定性
研究了泊松噪声中随机变量的估计问题。具体来说,主要重点是评估线性估计器的最优性和近最优性条件。在本文的第一部分中,我们证明了当且仅当底层先验是伽马分布且暗电流参数为零时,线性估计器是最优的。在论文的第二部分,对线性估计量进行了稳定性分析。具体地说,如果一个最优估计量在Lp,p≥1的距离上接近一个线性估计量,那么在lsamvy度量和Kolmogorov度量中潜在的先验分布近似为gamma。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信