Remarks on the Liechti-Strenner's examples having small dilatations

J. Ham, Joongul Lee
{"title":"Remarks on the Liechti-Strenner's examples having small dilatations","authors":"J. Ham, Joongul Lee","doi":"10.4134/CKMS.C190365","DOIUrl":null,"url":null,"abstract":"We show that the Liechti-Strenner's example for the closed nonorientable surface in \\cite{LiechtiStrenner18} minimizes the dilatation within the class of pseudo-Anosov homeomorphisms with an orientable invariant foliation and all but the first coefficient of the characteristic polynomial of the action induced on the first cohomology nonpositive. We also show that the Liechti-Strenner's example of orientation-reversing homeomorphism for the closed orientable surface in \\cite{LiechtiStrenner18} minimizes the dilatation within the class of pseudo-Anosov homeomorphisms with an orientable invariant foliation and all but the first coefficient of the characteristic polynomial $p(x)$ of the action induced on the first cohomology nonpositive or all but the first coefficient of $p(x) (x \\pm 1)^2$, $p(x) (x^2 \\pm 1)$, or $p(x) (x^2 \\pm x + 1)$ nonpositive.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4134/CKMS.C190365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the Liechti-Strenner's example for the closed nonorientable surface in \cite{LiechtiStrenner18} minimizes the dilatation within the class of pseudo-Anosov homeomorphisms with an orientable invariant foliation and all but the first coefficient of the characteristic polynomial of the action induced on the first cohomology nonpositive. We also show that the Liechti-Strenner's example of orientation-reversing homeomorphism for the closed orientable surface in \cite{LiechtiStrenner18} minimizes the dilatation within the class of pseudo-Anosov homeomorphisms with an orientable invariant foliation and all but the first coefficient of the characteristic polynomial $p(x)$ of the action induced on the first cohomology nonpositive or all but the first coefficient of $p(x) (x \pm 1)^2$, $p(x) (x^2 \pm 1)$, or $p(x) (x^2 \pm x + 1)$ nonpositive.
关于具有小扩张的Liechti-Strenner例子的评论
我们证明了\cite{LiechtiStrenner18}中闭非定向曲面的Liechti-Strenner的例子使具有可定向不变叶理的伪anosov同纯类内的膨胀最小,并且除了第一个上同调非正的作用的特征多项式的第一个系数外,其他的都最小。我们还证明了在\cite{LiechtiStrenner18}中闭可定向曲面的反取向同纯的Liechti-Strenner的例子使具有可定向不变叶理的伪anosov同纯类内的膨胀最小化,并且除了第一个上同调非正的作用的特征多项式$p(x)$的所有系数之外,或者除了$p(x) (x \pm 1)^2$, $p(x) (x^2 \pm 1)$的所有系数之外,或者$p(x) (x^2 \pm x + 1)$不带正电。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信