A high‐safety, flame‐retardant cellulose‐based separator with encapsulation structure for lithium‐ion battery

SmartMat Pub Date : 2023-02-13 DOI:10.1002/smm2.1182
Jinzhou Fu, Hanwei Wang, Zhichen Du, Yao Liu, Qingfeng Sun, Huiqiao Li
{"title":"A high‐safety, flame‐retardant cellulose‐based separator with encapsulation structure for lithium‐ion battery","authors":"Jinzhou Fu, Hanwei Wang, Zhichen Du, Yao Liu, Qingfeng Sun, Huiqiao Li","doi":"10.1002/smm2.1182","DOIUrl":null,"url":null,"abstract":"The safety issues of lithium‐ion batteries have received attention because flammable organic electrolytes are used. Also, the commercial polyolefin separator will undergo severe thermal shrinkage when the internal temperature of the battery increases to 130–160°C, which increases the risk. Therefore, the development of a high thermal stability and high‐safety separator is an effective strategy to improve battery safety. Herein, we design a green, cellulose‐based separator (Cel@DBDPE) with a unique encapsulation structure for lithium‐ion batteries, in which functional flame retardants (DBDPE) are wrapped in microscrolls formed by the self‐rolling of 2D cellulose nanosheets upon freeze‐drying. This structure can firmly anchor DBDPE particles in the separator to prevent them from undergoing exfoliation and does not affect the properties of the separator, such as the thickness and the pore structure. Compared with commercial polypropylene, Cel@DBDPE has excellent thermal stability and flame retardancy. The former makes it less prone to thermal shrinkage and the latter can effectively prevent the combustion of the electrolyte, showing an efficient self‐extinguishing ability. Moreover, the Cel@DBDPE is only 15 μm in size and has competitive properties comparable to polypropylene. Thus, there is no sacrifice in the electrochemical performance of battery when the Cel@DBDPE is used as separator. This study provides a new structural design for the construction of a high‐safety separator.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SmartMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smm2.1182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The safety issues of lithium‐ion batteries have received attention because flammable organic electrolytes are used. Also, the commercial polyolefin separator will undergo severe thermal shrinkage when the internal temperature of the battery increases to 130–160°C, which increases the risk. Therefore, the development of a high thermal stability and high‐safety separator is an effective strategy to improve battery safety. Herein, we design a green, cellulose‐based separator (Cel@DBDPE) with a unique encapsulation structure for lithium‐ion batteries, in which functional flame retardants (DBDPE) are wrapped in microscrolls formed by the self‐rolling of 2D cellulose nanosheets upon freeze‐drying. This structure can firmly anchor DBDPE particles in the separator to prevent them from undergoing exfoliation and does not affect the properties of the separator, such as the thickness and the pore structure. Compared with commercial polypropylene, Cel@DBDPE has excellent thermal stability and flame retardancy. The former makes it less prone to thermal shrinkage and the latter can effectively prevent the combustion of the electrolyte, showing an efficient self‐extinguishing ability. Moreover, the Cel@DBDPE is only 15 μm in size and has competitive properties comparable to polypropylene. Thus, there is no sacrifice in the electrochemical performance of battery when the Cel@DBDPE is used as separator. This study provides a new structural design for the construction of a high‐safety separator.
用于锂离子电池的高安全、阻燃、封装结构的纤维素基隔膜
由于锂离子电池使用易燃的有机电解质,其安全性问题一直受到人们的关注。另外,当电池内部温度升高到130-160℃时,商用聚烯烃分离器会发生严重的热收缩,增加了风险。因此,开发高热稳定性和高安全性的隔膜是提高电池安全性的有效策略。在此,我们设计了一种绿色的纤维素基隔膜(Cel@DBDPE),它具有独特的锂离子电池封装结构,其中功能阻燃剂(DBDPE)包裹在冷冻干燥后二维纤维素纳米片自滚形成的微卷中。这种结构可以将DBDPE颗粒牢固地锚定在分离器中,防止其发生剥落,并且不影响分离器的厚度和孔隙结构等性能。与商用聚丙烯相比,Cel@DBDPE具有优异的热稳定性和阻燃性。前者使其不易发生热收缩,后者能有效防止电解液的燃烧,表现出高效的自熄能力。此外,Cel@DBDPE尺寸仅为15 μm,具有可与聚丙烯媲美的竞争性能。因此,当使用Cel@DBDPE作为隔膜时,不会影响电池的电化学性能。本研究为高安全性分离器的构造提供了一种新的结构设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信