Approximation by Durrmeyer variant of Cheney-Sharma Chlodovsky operators

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
Chandra Prakash, D. K. Verma, N. Deo
{"title":"Approximation by Durrmeyer variant of Cheney-Sharma Chlodovsky operators","authors":"Chandra Prakash, D. K. Verma, N. Deo","doi":"10.3934/mfc.2022034","DOIUrl":null,"url":null,"abstract":"In this paper, we are dealing with Cheney-Sharma Chlodovsky Durrmeyer operators and studying their approximation properties. The Bohman-Korovkin theorem is verified and estimated the convergence properties using of modulus of continuity, Lipschitz- type space, and Ditzian-Totik modulus of continuity. After that, the weighted approximation result is also given. Finally, some results related to the A-statistical convergence of the operators are obtained.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"148 1","pages":"535-545"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are dealing with Cheney-Sharma Chlodovsky Durrmeyer operators and studying their approximation properties. The Bohman-Korovkin theorem is verified and estimated the convergence properties using of modulus of continuity, Lipschitz- type space, and Ditzian-Totik modulus of continuity. After that, the weighted approximation result is also given. Finally, some results related to the A-statistical convergence of the operators are obtained.
Cheney-Sharma Chlodovsky算子的Durrmeyer变式逼近
在本文中,我们处理了Cheney-Sharma Chlodovsky Durrmeyer算子并研究了它们的逼近性质。利用连续模、Lipschitz- type空间和Ditzian-Totik连续模验证了Bohman-Korovkin定理,并估计了其收敛性。然后给出了加权近似结果。最后,得到了算子的a统计收敛性的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信