A rank inequality for finite geometric lattices

Curtis Greene
{"title":"A rank inequality for finite geometric lattices","authors":"Curtis Greene","doi":"10.1016/S0021-9800(70)80090-4","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>L</em> be a finite geometric lattice of dimension <em>n</em>, and let <em>w(k)</em> denote the number of elements in <em>L</em> of rank <em>k</em>. Two theorems about the numbers <em>w(k)</em> are proved: first, <em>w(k)</em>≥<em>w</em>(1) for <em>k</em>=2,3,…,<em>n</em>−1. Second, <em>w(k)</em>=<em>w</em>(1) if and only if <em>k</em>=<em>n</em>−1 and <em>L</em> is modular. Several corollaries concerning the “matching” of points and dual points are derived from these results.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 4","pages":"Pages 357-364"},"PeriodicalIF":0.0000,"publicationDate":"1970-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80090-4","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

Let L be a finite geometric lattice of dimension n, and let w(k) denote the number of elements in L of rank k. Two theorems about the numbers w(k) are proved: first, w(k)w(1) for k=2,3,…,n−1. Second, w(k)=w(1) if and only if k=n−1 and L is modular. Several corollaries concerning the “matching” of points and dual points are derived from these results.

有限几何格的秩不等式
设L是一个维数为n的有限几何格,令w(k)表示L中秩为k的元素个数。证明了关于数w(k)的两个定理:第一,当k=2,3,…,n−1时,w(k)≥w(1)。其次,当且仅当k=n−1且L是模时,w(k)=w(1)。由这些结果导出了关于点与对偶点“匹配”的若干推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信