Revisiting the Industrial Pneumatic Technology—An Innovative Development for an Increased Energetic Efficiency

A. Rufer
{"title":"Revisiting the Industrial Pneumatic Technology—An Innovative Development for an Increased Energetic Efficiency","authors":"A. Rufer","doi":"10.1115/1.4054327","DOIUrl":null,"url":null,"abstract":"\n A new pneumatic cylinder assembly is proposed as an alternative to classical cylinders which are well known for their poor energetic efficiency. The new system comprises an added expansion volume which permits to recover the energy content of a filled cylinder by a real thermodynamic expansion instead of simply releasing the filled air to the atmosphere. The energetic performance of the new system is evaluated and compared with the performance of an equivalent single cylinder producing the same mechanical work. The paper explains the operation principle and properties through numeric simulation and presents a small experimental prototype.","PeriodicalId":8652,"journal":{"name":"ASME Open Journal of Engineering","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Open Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4054327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new pneumatic cylinder assembly is proposed as an alternative to classical cylinders which are well known for their poor energetic efficiency. The new system comprises an added expansion volume which permits to recover the energy content of a filled cylinder by a real thermodynamic expansion instead of simply releasing the filled air to the atmosphere. The energetic performance of the new system is evaluated and compared with the performance of an equivalent single cylinder producing the same mechanical work. The paper explains the operation principle and properties through numeric simulation and presents a small experimental prototype.
重新审视工业气动技术——提高能源效率的创新发展
提出了一种新的气动气缸组件,以替代众所周知的能量效率差的经典气缸。新系统包括一个额外的膨胀体积,允许通过真正的热力学膨胀来恢复充满的圆柱体的能量含量,而不是简单地将充满的空气释放到大气中。对新系统的能量性能进行了评估,并与产生相同机械功的等效单缸的性能进行了比较。本文通过数值模拟说明了其工作原理和性能,并给出了一个小型实验样机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信