Nguyen Hue Linh, P. Huệ, Nguyen Thi Thanh Binh, Bui Thanh Tung, V. Loi, Ng Yen, N. Hai
{"title":"RNA Drugs","authors":"Nguyen Hue Linh, P. Huệ, Nguyen Thi Thanh Binh, Bui Thanh Tung, V. Loi, Ng Yen, N. Hai","doi":"10.25073/2588-1132/vnumps.4388","DOIUrl":null,"url":null,"abstract":"RNA drugs are a new group of drugs that delivers RNAs or similar structures inside the body to achieve the therapeutic effect. This is a promising direction in drug development to treat serious and rare genetic diseases more specifically and effectively. In reality, the genetic systems and protein synthesis processes of living organisms are extremely complex, so the development of RNA drugs faces many difficulties. To achieve success, many different studies have been carried out to address issues such as finding suitable RNAs, synthesizing similar RNA structures, stabilizing RNA structures, and introducing drugs into targeted cells. Since the first RNA drug was officially approved by the FDA (2004), 10 RNA drugs in total have been approved to date. Among them, two vaccines, appearing at the time when much needed support to cope with the new SARS-CoV-2 variants, were developed using mRNA technology. With these achievements, scientists can have more confidence in the possibilities of evolving a new drug group that is more specific and effective, which is RNA drugs. This review briefly introduces the group of drugs that use RNAs, RNA structural analogs, and RNA biomarkers to develop novel drugs for application in the diagnosis, prevention, and treatment of disease. \nKeywords: \nRNA drugs; mRNA; the protein; vaccines; RNA diagnostics; small molecule drugs; RNA target. \nReferences \n[1] U. Sahin, K. Karikó, Ö. Türeci, Mrna-Based Therapeutics-Developing A New Class of Drugs, Nature Reviews Drug Discovery, Vol. 13, No. 10, 2014, pp. 759-780.[2] T. H. Nguyen, T. M. H. Pham, M. K. Tu, Pharmacogenetics: Prospects and Issues. Journal of Pharmacy, No. 54, Vol. 456, 2014, pp. 2-6.[3] A. M. Yu, Y. H. Choi, M. J. Tu, Rna Drugs and Rna Targets for Small Molecules: Principles, Progress, and Challenges, Pharmacological Reviews, Vol. 72, No. 4, 2020, pp. 862-898.[4] M. A. Hendaus, F. A. Jomha, Mrna Vaccines for Covid-19: A Simple Explanation, Qatar Medical Journal, Vol. 2021, No. 1, 2021, pp. 1-5.[5] A. Banerji, P. G. Wickner, R. Saff, C. A. Stone Jr, L. B. Robinson, A. A. Long et al., Mrna Vaccines to Prevent Covid-19 Disease and Reported Allergic Reactions: Current Evidence and Suggested Approach, the Journal of Allergy and Clinical Immunology: in Practice, Vol. 9, No. 4, 2021, pp. 1423-1437.[6] https://www.Fda.Gov/Emergency-Preparedness-and-Response/Coronavirus-Disease-2019-Covid-19/Covid-19-Vaccines (accessed on: December 15th, 2021).[7] E. H. Aarntzen, G. Schreibelt, K. Bol, W. J. Lesterhuis, A. J. Croockewit, J .H. De Wilt et al., Vaccination with Mrna-Electroporated Dendritic Cells Induces Robust Tumor Antigen-Specific Cd4+ and Cd8+ T Cells Responses in Stage Iii and Iv Melanoma Patients, Clinical Cancer Research, Vol. 18, No. 19, 2012, pp. 5460-5470.[8] H. M. Phan, K. L. Vu, T. H. Nguyen, T. T. Bui, A Comprehensive Review of Vaccines Against Covid-19, VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 37, No. 3, 2021, pp. 1-19 (in Vietnamese).[9] N. Pardi, M. J. Hogan, F. W. Porter, D. Weissman, Mrna Vaccines - A New Era in Vaccinology, Nature Reviews Drug Discovery, Vol. 17, No. 4, 2018, pp. 261-279.[10] G. Wen, T. Zhou, W. Gu, The Potential of Using Blood Circular Rna As Liquid Biopsy Biomarker for Human Diseases. Protein & Cell, Vol. 12, No. 12, 2021, pp. 911-946.[11] S. Sabarimurugan, C. Kumarasamy, S. Baxi, A. Devi, R. Jayaraj, Systematic Review and Meta-Analysis of Prognostic Microrna Biomarkers for Survival Outcome in Nasopharyngeal Carcinoma. Plos One, Vol. 14, No. 2, 2019, pp. 1-18.[12] F. Wang, T. Zuroske, J. K. Watts, Rna Therapeutics on the Rise, Nat Rev Drug Discov, Vol. 19, No. 7, 2020, pp. 441-442.[13] E. J. Wild, S. J. Tabrizi, Therapies Targeting Dna and Rna in Huntington's Disease, The Lancet Neurology, Vol. 16, No. 10, 2017, pp. 837-847.[14] H. Han, Rna Interference to Knock Down Gene Expression, Disease Gene Identification, 2018, pp. 293-302.[15] J. Kim, C. Hu, C. M. E. Achkar, L.E. Black, J. Douville, A. Larson et al., Patient-Customized Oligonucleotide Therapy for A Rare Genetic Disease, New England Journal of Medicine, Vol. 381, No. 17, 2019, pp. 1644-1652.[16] U. Food, D. Administration, Fda Approves First-of-Its Kind Targeted Rna-Based Therapy to Treat A Rare Disease, Silver Spring (Md): Usfda, 2018.[17] E. Sardh, P. Harper, M. Balwani, P. Stein, D. Rees, D. M. Bissel et al., Phase 1 Trial of An Rna Interference Therapy for Acute Intermittent Porphyria, New England Journal of Medicine, Vol. 380, No. 6, 2019, pp. 549-558.[18] G. Devi, Sirna-Based Approaches in Cancer Therapy, Cancer Gene Therapy, Vol. 13, No. 9, 2006, pp. 819-829.[19] T. G. Hopkins, M. Mura, H. A. A. Ashtal, R. M. Lahr, N. A. Latip, K. Sweeney et al., The Rna-Binding Protein Larp1 Is A Post-Transcriptional Regulator of Survival and Tumorigenesis in Ovarian Cancer, Nucleic Acids Research, Vol. 44, No. 3, 2016, pp. 1227-1246.[20] V. Iadevaia, M. D. Wouters, A. Kanitz, A. M. M. González, E. E. Laing, A. P. Gerber, Tandem Rna Isolation Reveals Functional Rearrangement of Rna-Binding Proteins on Cdkn1b/P27 Kip1 3’utrs in Cisplatin Treated Cells, Rna Biology, Vol. 17, No. 1, 2020, pp. 33-46.[21] T. T. Bui, K. S. Phan, T. M. H. Pham, T. H. Nguyen, PEGylation of Curcumin and Prospect of Application, VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 32, No. 1, 2016, pp 1-11.","PeriodicalId":23520,"journal":{"name":"VNU Journal of Science: Medical and Pharmaceutical Sciences","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Medical and Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1132/vnumps.4388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
RNA drugs are a new group of drugs that delivers RNAs or similar structures inside the body to achieve the therapeutic effect. This is a promising direction in drug development to treat serious and rare genetic diseases more specifically and effectively. In reality, the genetic systems and protein synthesis processes of living organisms are extremely complex, so the development of RNA drugs faces many difficulties. To achieve success, many different studies have been carried out to address issues such as finding suitable RNAs, synthesizing similar RNA structures, stabilizing RNA structures, and introducing drugs into targeted cells. Since the first RNA drug was officially approved by the FDA (2004), 10 RNA drugs in total have been approved to date. Among them, two vaccines, appearing at the time when much needed support to cope with the new SARS-CoV-2 variants, were developed using mRNA technology. With these achievements, scientists can have more confidence in the possibilities of evolving a new drug group that is more specific and effective, which is RNA drugs. This review briefly introduces the group of drugs that use RNAs, RNA structural analogs, and RNA biomarkers to develop novel drugs for application in the diagnosis, prevention, and treatment of disease.
Keywords:
RNA drugs; mRNA; the protein; vaccines; RNA diagnostics; small molecule drugs; RNA target.
References
[1] U. Sahin, K. Karikó, Ö. Türeci, Mrna-Based Therapeutics-Developing A New Class of Drugs, Nature Reviews Drug Discovery, Vol. 13, No. 10, 2014, pp. 759-780.[2] T. H. Nguyen, T. M. H. Pham, M. K. Tu, Pharmacogenetics: Prospects and Issues. Journal of Pharmacy, No. 54, Vol. 456, 2014, pp. 2-6.[3] A. M. Yu, Y. H. Choi, M. J. Tu, Rna Drugs and Rna Targets for Small Molecules: Principles, Progress, and Challenges, Pharmacological Reviews, Vol. 72, No. 4, 2020, pp. 862-898.[4] M. A. Hendaus, F. A. Jomha, Mrna Vaccines for Covid-19: A Simple Explanation, Qatar Medical Journal, Vol. 2021, No. 1, 2021, pp. 1-5.[5] A. Banerji, P. G. Wickner, R. Saff, C. A. Stone Jr, L. B. Robinson, A. A. Long et al., Mrna Vaccines to Prevent Covid-19 Disease and Reported Allergic Reactions: Current Evidence and Suggested Approach, the Journal of Allergy and Clinical Immunology: in Practice, Vol. 9, No. 4, 2021, pp. 1423-1437.[6] https://www.Fda.Gov/Emergency-Preparedness-and-Response/Coronavirus-Disease-2019-Covid-19/Covid-19-Vaccines (accessed on: December 15th, 2021).[7] E. H. Aarntzen, G. Schreibelt, K. Bol, W. J. Lesterhuis, A. J. Croockewit, J .H. De Wilt et al., Vaccination with Mrna-Electroporated Dendritic Cells Induces Robust Tumor Antigen-Specific Cd4+ and Cd8+ T Cells Responses in Stage Iii and Iv Melanoma Patients, Clinical Cancer Research, Vol. 18, No. 19, 2012, pp. 5460-5470.[8] H. M. Phan, K. L. Vu, T. H. Nguyen, T. T. Bui, A Comprehensive Review of Vaccines Against Covid-19, VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 37, No. 3, 2021, pp. 1-19 (in Vietnamese).[9] N. Pardi, M. J. Hogan, F. W. Porter, D. Weissman, Mrna Vaccines - A New Era in Vaccinology, Nature Reviews Drug Discovery, Vol. 17, No. 4, 2018, pp. 261-279.[10] G. Wen, T. Zhou, W. Gu, The Potential of Using Blood Circular Rna As Liquid Biopsy Biomarker for Human Diseases. Protein & Cell, Vol. 12, No. 12, 2021, pp. 911-946.[11] S. Sabarimurugan, C. Kumarasamy, S. Baxi, A. Devi, R. Jayaraj, Systematic Review and Meta-Analysis of Prognostic Microrna Biomarkers for Survival Outcome in Nasopharyngeal Carcinoma. Plos One, Vol. 14, No. 2, 2019, pp. 1-18.[12] F. Wang, T. Zuroske, J. K. Watts, Rna Therapeutics on the Rise, Nat Rev Drug Discov, Vol. 19, No. 7, 2020, pp. 441-442.[13] E. J. Wild, S. J. Tabrizi, Therapies Targeting Dna and Rna in Huntington's Disease, The Lancet Neurology, Vol. 16, No. 10, 2017, pp. 837-847.[14] H. Han, Rna Interference to Knock Down Gene Expression, Disease Gene Identification, 2018, pp. 293-302.[15] J. Kim, C. Hu, C. M. E. Achkar, L.E. Black, J. Douville, A. Larson et al., Patient-Customized Oligonucleotide Therapy for A Rare Genetic Disease, New England Journal of Medicine, Vol. 381, No. 17, 2019, pp. 1644-1652.[16] U. Food, D. Administration, Fda Approves First-of-Its Kind Targeted Rna-Based Therapy to Treat A Rare Disease, Silver Spring (Md): Usfda, 2018.[17] E. Sardh, P. Harper, M. Balwani, P. Stein, D. Rees, D. M. Bissel et al., Phase 1 Trial of An Rna Interference Therapy for Acute Intermittent Porphyria, New England Journal of Medicine, Vol. 380, No. 6, 2019, pp. 549-558.[18] G. Devi, Sirna-Based Approaches in Cancer Therapy, Cancer Gene Therapy, Vol. 13, No. 9, 2006, pp. 819-829.[19] T. G. Hopkins, M. Mura, H. A. A. Ashtal, R. M. Lahr, N. A. Latip, K. Sweeney et al., The Rna-Binding Protein Larp1 Is A Post-Transcriptional Regulator of Survival and Tumorigenesis in Ovarian Cancer, Nucleic Acids Research, Vol. 44, No. 3, 2016, pp. 1227-1246.[20] V. Iadevaia, M. D. Wouters, A. Kanitz, A. M. M. González, E. E. Laing, A. P. Gerber, Tandem Rna Isolation Reveals Functional Rearrangement of Rna-Binding Proteins on Cdkn1b/P27 Kip1 3’utrs in Cisplatin Treated Cells, Rna Biology, Vol. 17, No. 1, 2020, pp. 33-46.[21] T. T. Bui, K. S. Phan, T. M. H. Pham, T. H. Nguyen, PEGylation of Curcumin and Prospect of Application, VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 32, No. 1, 2016, pp 1-11.
RNA药物是一种通过在体内传递RNA或类似结构来达到治疗效果的新型药物。这是一个有希望的药物开发方向,更具体和有效地治疗严重和罕见的遗传疾病。现实中,生物体的遗传系统和蛋白质合成过程极其复杂,因此RNA药物的开发面临诸多困难。为了取得成功,人们进行了许多不同的研究,以解决诸如寻找合适的RNA,合成类似的RNA结构,稳定RNA结构以及将药物引入目标细胞等问题。自2004年第一个RNA药物被FDA正式批准以来,迄今为止总共有10个RNA药物被批准。其中,在急需支持以应对新的SARS-CoV-2变体时出现的两种疫苗是利用mRNA技术开发的。有了这些成就,科学家们可以更有信心开发出一种更特异、更有效的新药,这就是RNA药物。本文简要介绍了利用RNA、RNA结构类似物和RNA生物标志物开发用于疾病诊断、预防和治疗的新型药物。关键词:RNA药物;信使rna;蛋白质;疫苗;RNA诊断;小分子药物;RNA的目标。参考文献[1]U. Sahin, K. Karikó, Ö。引用本文:陈志强,基于mrna的治疗方法——开发一类新的药物,《自然评论》,2014年第10期,第759-780页阮廷辉,范廷辉,杜明强,药物遗传学:展望与问题。中国药学杂志,2014年第54期,第456卷,第2-6页余亚明,蔡玉辉,杜明军,小分子Rna药物和Rna靶点:原理,进展和挑战,药理学评论,Vol. 72, No. 4, 2020, pp. 862-898M. A. Hendaus, F. A. Jomha,新冠病毒Mrna疫苗:一个简单的解释,卡塔尔医学杂志,Vol. 2021, No. 1, 2021, pp. 1-5A. Banerji, P. G. Wickner, R. Saff, C. A. Stone Jr, L. B. Robinson, A. A. Long等。Mrna疫苗预防Covid-19疾病和报告的过敏反应:目前的证据和建议的方法,过敏和临床免疫学杂志:在实践中,Vol. 9, No. 4, 2021, pp. 1423-1437。[6] https://www.Fda.Gov/Emergency-Preparedness-and-Response/Coronavirus-Disease-2019-Covid-19/Covid-19-Vaccines(访问时间:2021年12月15日)E. H. Aarntzen, G. Schreibelt, K. Bol, W. J. Lesterhuis, A. J. Croockewit, J. h。De Wilt等,mrna电穿孔树突状细胞免疫诱导肿瘤抗原特异性Cd4+和Cd8+ T细胞在Iii期和Iv期黑色素瘤患者中的应答,临床癌症研究,Vol. 18, No. 19, 2012, pp. 5460-5470潘洪明,吴国良,阮廷辉,裴廷涛,新型冠状病毒疫苗研究进展,中华医学杂志,第37卷,第3期,2021,pp. 1-19(越南文)杨建军,杨建军,杨建军,Mrna疫苗:疫苗学的新时代,《自然评论》,2018年第4期,第261-279页温刚,周涛,顾伟,血液循环Rna作为液体活检生物标志物的潜力。蛋白质与细胞,Vol. 12, No. 12, 2021, pp. 911-946李建军,李建军,李建军,李建军。鼻咽癌患者预后的meta分析及预后评价。Plos One, Vol. 14, No. 2, 2019, pp. 1-18王峰、王志强、王志强,Rna疗法的兴起,《新药物发现》,Vol. 19, No. 7, 2020, pp. 441-442王志强,王志强,Dna和Rna靶向治疗在亨廷顿舞蹈病中的应用,中华医学杂志,2017,第10期,pp. 837-847韩辉,Rna干扰基因敲低基因表达的研究,中国生物医学工程学报,2018,pp. 391 - 391刘建军,刘建军,刘建军,刘建军等,罕见遗传疾病患者自定义寡核苷酸治疗的研究进展,中华医学杂志,2019,第17期,pp. 1644-1652美国食品和药物管理局批准首个基于靶向rna的治疗罕见疾病的药物,Silver Spring (Md): Usfda, 2018. b[17]E. Sardh, P. Harper, M. Balwani, P. Stein, D. Rees, D. M. Bissel等,Rna干扰治疗急性间歇性卟啉症的1期试验,新英国医学杂志,Vol. 380, No. 6, 2019, pp. 549-558李志强,基于sirna的肿瘤治疗方法,《肿瘤基因治疗》Vol. 13 No. 9, 2006, pp. 819-829陈晓明,陈晓明,陈晓明,陈晓明等。rna结合蛋白Larp1在卵巢癌中的表达及其调控作用,中国生物医学工程学报,2016,No. 3, pp. 1227-1246V. Iadevaia, M. D. Wouters, A. Kanitz, A. M. M. González, E. E. Laing, A. P。 Gerber,串联Rna分离揭示顺铂处理细胞中Cdkn1b/P27 Kip1 3'utrs上Rna结合蛋白的功能重排,Rna生物学,Vol. 17, No. 1, 2020, pp. 33-46裴廷涛,潘金生,范明辉,阮廷辉,姜黄素聚乙二醇化及其应用前景,中国生物医学工程学报,Vol. 32, No. 1, 2016, pp 1-11。