Preliminary Investigation of Visual Information Influencing Driver’s Steering Control based on CNN

Yuki Okafuji, Toshihito Sugiura, T. Wada
{"title":"Preliminary Investigation of Visual Information Influencing Driver’s Steering Control based on CNN","authors":"Yuki Okafuji, Toshihito Sugiura, T. Wada","doi":"10.1109/SMC42975.2020.9283290","DOIUrl":null,"url":null,"abstract":"Understanding the relationship between driving behavior and visual information is an important issue in order to understand driving behavior holistically. In this study, we constructed a driver model that reproduces the driver’s steering behavior from visual information based on the Convolutional Neural Network (CNN) with human physical characteristics. We obtained the driving behavior in a simulator study to train the proposed CNN model. Which region in the visual field influencing drivers’ steering behavior was analyzed using the results of the feature maps generated by the trained CNN model and the driver’s gaze behavior. The results indicate that the drivers perform steering action using the information within 20 degrees from the gaze point.","PeriodicalId":6718,"journal":{"name":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","volume":"88 5 1","pages":"2263-2268"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMC42975.2020.9283290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Understanding the relationship between driving behavior and visual information is an important issue in order to understand driving behavior holistically. In this study, we constructed a driver model that reproduces the driver’s steering behavior from visual information based on the Convolutional Neural Network (CNN) with human physical characteristics. We obtained the driving behavior in a simulator study to train the proposed CNN model. Which region in the visual field influencing drivers’ steering behavior was analyzed using the results of the feature maps generated by the trained CNN model and the driver’s gaze behavior. The results indicate that the drivers perform steering action using the information within 20 degrees from the gaze point.
基于CNN的视觉信息对驾驶员转向控制的影响初探
理解驾驶行为与视觉信息之间的关系是全面理解驾驶行为的一个重要问题。在这项研究中,我们构建了一个基于卷积神经网络(CNN)的驾驶员模型,该模型从视觉信息中再现驾驶员的转向行为,并具有人类的身体特征。我们在模拟器研究中获得了驾驶行为,以训练所提出的CNN模型。利用训练后的CNN模型生成的特征图和驾驶员注视行为的结果,分析视野中哪些区域影响驾驶员的转向行为。结果表明,驾驶员在距注视点20度范围内使用信息进行转向操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信