Monopole contributions to refined Vafa–Witten invariants

IF 2 1区 数学
T. Laarakker
{"title":"Monopole contributions to refined Vafa–Witten\ninvariants","authors":"T. Laarakker","doi":"10.2140/gt.2020.24.2781","DOIUrl":null,"url":null,"abstract":"We study the monopole contribution to the refined Vafa-Witten invariant, recently defined by Maulik and Thomas [13]. We apply results of Gholampour and Thomas [7] to prove a universality result for the generating series of contributions of Higgs pairs with 1-dimensional weight spaces. For prime rank, these account for the entire monopole contribution, by a theorem of Thomas. We use toric computations to determine part of the generating series, and find agreement with the conjectures of G\\\"ottsche and Kool [10] for rank 2 and 3.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"16 4 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2018-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2020.24.2781","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We study the monopole contribution to the refined Vafa-Witten invariant, recently defined by Maulik and Thomas [13]. We apply results of Gholampour and Thomas [7] to prove a universality result for the generating series of contributions of Higgs pairs with 1-dimensional weight spaces. For prime rank, these account for the entire monopole contribution, by a theorem of Thomas. We use toric computations to determine part of the generating series, and find agreement with the conjectures of G\"ottsche and Kool [10] for rank 2 and 3.
单极子对改进的vfa - witteninvariants的贡献
我们研究了单极子对最近由Maulik和Thomas定义的精炼Vafa-Witten不变量的贡献[13]。我们应用Gholampour和Thomas[7]的结果证明了一维权空间中希格斯对的贡献序列生成的一个普惠性结果。对于素数秩,根据托马斯定理,这些解释了整个单极子的贡献。我们使用环向计算来确定部分生成序列,并发现与G\ \ ottsche和Kool[10]对秩2和秩3的猜想一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信