Covariant formulation of nonlinear Langevin theory with multiplicative Gaussian white noises

Mingnan Ding, Z. Tu, Xiangjun Xing
{"title":"Covariant formulation of nonlinear Langevin theory with multiplicative Gaussian white noises","authors":"Mingnan Ding, Z. Tu, Xiangjun Xing","doi":"10.1103/physrevresearch.2.033381","DOIUrl":null,"url":null,"abstract":"The multi-dimensional non-linear Langevin equation with multiplicative Gaussian white noises in Ito's sense is made covariant with respect to non-linear transform of variables. The formalism involves no metric or affine connection, works for systems with or without detailed balance, and is substantially simpler than previous theories. Its relation with deterministic theory is clarified. The unitary limit and Hermitian limit of the theory are examined. Some implications on the choices of stochastic calculus are also discussed.","PeriodicalId":8473,"journal":{"name":"arXiv: Statistical Mechanics","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.2.033381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The multi-dimensional non-linear Langevin equation with multiplicative Gaussian white noises in Ito's sense is made covariant with respect to non-linear transform of variables. The formalism involves no metric or affine connection, works for systems with or without detailed balance, and is substantially simpler than previous theories. Its relation with deterministic theory is clarified. The unitary limit and Hermitian limit of the theory are examined. Some implications on the choices of stochastic calculus are also discussed.
具有乘性高斯白噪声的非线性朗之万理论的协变公式
对伊藤意义上具有多重高斯白噪声的多维非线性朗之万方程进行变量的非线性变换协变。这种形式主义不涉及度量或仿射连接,适用于有或没有详细平衡的系统,并且比以前的理论简单得多。澄清了它与决定论的关系。考察了该理论的酉极限和厄米极限。讨论了随机微积分选择的一些启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信