Tropical meromorphic functions in a finite interval

IF 0.9 4区 数学 Q2 Mathematics
I. Laine, K. Tohge
{"title":"Tropical meromorphic functions in a finite interval","authors":"I. Laine, K. Tohge","doi":"10.5186/AASFM.2019.4418","DOIUrl":null,"url":null,"abstract":"Abstract. The tropical Nevanlinna theory in the whole real line R describes value distribution of continuous piecewise linear functions of a real variable with arbitrary real slopes, called tropical meromorphic functions, similarly as value distribution of meromorphic functions of a complex variable is described by the classical Nevanlinna theory in the whole complex plane C. As a tropical counterpart to the Nevanlinna theory in a disc or an annulus centered at the origin, we introduce in this paper a value distribution theory of continuous piecewise linear functions in a symmetric finite open interval (−R,R). The shift operator (difference operator) has a key role in the tropical value distribution theory in R corresponding to the role of the differential operator in the Nevanlinna theory in a subregion of C. However, the affine shift x 7→ x+ c does not operate properly in finite intervals. Therefore, we introduce a shift x 7→ sτ (x) which may be called as the tropical hyperbolic shift. This notion enables us to obtain the quotient estimate m (","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4418","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract. The tropical Nevanlinna theory in the whole real line R describes value distribution of continuous piecewise linear functions of a real variable with arbitrary real slopes, called tropical meromorphic functions, similarly as value distribution of meromorphic functions of a complex variable is described by the classical Nevanlinna theory in the whole complex plane C. As a tropical counterpart to the Nevanlinna theory in a disc or an annulus centered at the origin, we introduce in this paper a value distribution theory of continuous piecewise linear functions in a symmetric finite open interval (−R,R). The shift operator (difference operator) has a key role in the tropical value distribution theory in R corresponding to the role of the differential operator in the Nevanlinna theory in a subregion of C. However, the affine shift x 7→ x+ c does not operate properly in finite intervals. Therefore, we introduce a shift x 7→ sτ (x) which may be called as the tropical hyperbolic shift. This notion enables us to obtain the quotient estimate m (
有限区间上的热带亚纯函数
摘要热带Nevanlinna理论在整个实直线R上描述具有任意实斜率的实变量的连续分段线性函数的值分布,称为热带亚纯函数,类似于经典Nevanlinna理论在整个复平面c上描述复变量的亚纯函数的值分布。本文引入了对称有限开区间(- R,R)上连续分段线性函数的值分布理论。位移算子(差分算子)在R的热带值分布理论中具有关键作用,对应于微分算子在c的子区域内的Nevanlinna理论中的作用。然而,x 7→x+ c的仿射位移在有限区间内不能正常运行。因此,我们引入一个位移x7→stτ (x),它可以称为热带双曲位移。这个概念使我们能够得到商估计m (
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信