Stages of Carboniferous-Triassic magmatism in the Black Sea region based on isotope-geochronological study of detrital zircons from jurassic coarse clastic strata of the Mountainous Crimea

IF 0.8 Q4 GEOCHEMISTRY & GEOPHYSICS
T. Romanyuk, N. Kuznetsov, S. Rud’ko, A. A. Kolesnikova, D. V. Moskovsky, A. S. Dubensky, V. Sheshukov, S. Lyapunov
{"title":"Stages of Carboniferous-Triassic magmatism in the Black Sea region based on isotope-geochronological study of detrital zircons from jurassic coarse clastic strata of the Mountainous Crimea","authors":"T. Romanyuk, N. Kuznetsov, S. Rud’ko, A. A. Kolesnikova, D. V. Moskovsky, A. S. Dubensky, V. Sheshukov, S. Lyapunov","doi":"10.5800/gt-2020-11-3-0486","DOIUrl":null,"url":null,"abstract":"The article presents the results of U-Pb isotope dating of detrital zircons from the Jurassic coarse rocks in the apex and the western slope of Mnt. Biyuk-Sinor (the southern wall of the Baidar basin, near the village of Orlinoe). These dates are compared with the detrital zircon dates obtained for sandy rocks from the Upper Jurassic coarse clastic strata composing the slopes of Mnt. Spilia near Balaklava Harbor and Mnt. Southern Demerdzhi near Alushta city, as well as the Middle Jurassic Bitak conglomerates near the village of Strogonovka (suburb of Simferopol city). The comparison shows a high degree of similarity of the averaged age characteristics of the main detrital zircon populations. Sandy rocks of Jurassic coarse clastic strata for zircon dating were sampled in four locations of the Mountaineous Crimea. Based on their dates and a summary set of ages of detrital zircon grains from sandstones of the Southern Coast of Crimea, spanning the stratigraphic interval from the Middle Jurassic to Neogene, we can provide a statistically reliable specification of the Carboniferous-Triassic time interval (360–200 Ma) of magmatic activity within the Black Sea region. This period was bounded in time by the Late Devonian and Early Jurassic relative magmatic lulls. None of the zircon grains of the Carboniferous-Triassic age has revealed Hf-isotopic characteristics indicating any significant contribution of crustal material older than the Mesoproterozoic into the protolith of the parent zircon rocks. Within the Carboniferous-Triassic interval of magmatic activity, three stages are distinguished: (I) 360–315 Ma, (II) 315–270 Ma, and (III) 270–200 Ma. Magmatic stage I (360–315 Ma) is related to the closure of the Reik ocean, which completed after the subducted slab ‘broke off’ into the mantle and was accompanied by the ubiquitously manifested HT-LP metamorphism. Zircon grains of stage I are characterized by peak ages of about 325–340 Ma and the dominance of negative eHf. Magmatic stages II (315–270 Ma) and III (270–200 Ma) correlate with functioning of the Scythian-Pontian volcanic suprasubduction belt. In these magmatic stages, zircon eHf values scatter from weakly negative to substantially positive (referred to the depleted mantle), which is typical for volcanic arcs. Fuzzy separation of stages II and III and strong variability of the peak ages of zircons from the studied samples (which we associate with these stages) can be due both to changes in magmatic activity in different segments of the belt, and to changes in the erosion intensity of crystalline complexes of the belt during the subsequent stages evolution caused by tectonic rearrangements within the Paleo-Tethys ocean and its peri-oceanic structures.","PeriodicalId":44925,"journal":{"name":"Geodynamics & Tectonophysics","volume":"6 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodynamics & Tectonophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5800/gt-2020-11-3-0486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3

Abstract

The article presents the results of U-Pb isotope dating of detrital zircons from the Jurassic coarse rocks in the apex and the western slope of Mnt. Biyuk-Sinor (the southern wall of the Baidar basin, near the village of Orlinoe). These dates are compared with the detrital zircon dates obtained for sandy rocks from the Upper Jurassic coarse clastic strata composing the slopes of Mnt. Spilia near Balaklava Harbor and Mnt. Southern Demerdzhi near Alushta city, as well as the Middle Jurassic Bitak conglomerates near the village of Strogonovka (suburb of Simferopol city). The comparison shows a high degree of similarity of the averaged age characteristics of the main detrital zircon populations. Sandy rocks of Jurassic coarse clastic strata for zircon dating were sampled in four locations of the Mountaineous Crimea. Based on their dates and a summary set of ages of detrital zircon grains from sandstones of the Southern Coast of Crimea, spanning the stratigraphic interval from the Middle Jurassic to Neogene, we can provide a statistically reliable specification of the Carboniferous-Triassic time interval (360–200 Ma) of magmatic activity within the Black Sea region. This period was bounded in time by the Late Devonian and Early Jurassic relative magmatic lulls. None of the zircon grains of the Carboniferous-Triassic age has revealed Hf-isotopic characteristics indicating any significant contribution of crustal material older than the Mesoproterozoic into the protolith of the parent zircon rocks. Within the Carboniferous-Triassic interval of magmatic activity, three stages are distinguished: (I) 360–315 Ma, (II) 315–270 Ma, and (III) 270–200 Ma. Magmatic stage I (360–315 Ma) is related to the closure of the Reik ocean, which completed after the subducted slab ‘broke off’ into the mantle and was accompanied by the ubiquitously manifested HT-LP metamorphism. Zircon grains of stage I are characterized by peak ages of about 325–340 Ma and the dominance of negative eHf. Magmatic stages II (315–270 Ma) and III (270–200 Ma) correlate with functioning of the Scythian-Pontian volcanic suprasubduction belt. In these magmatic stages, zircon eHf values scatter from weakly negative to substantially positive (referred to the depleted mantle), which is typical for volcanic arcs. Fuzzy separation of stages II and III and strong variability of the peak ages of zircons from the studied samples (which we associate with these stages) can be due both to changes in magmatic activity in different segments of the belt, and to changes in the erosion intensity of crystalline complexes of the belt during the subsequent stages evolution caused by tectonic rearrangements within the Paleo-Tethys ocean and its peri-oceanic structures.
基于克里米亚山区侏罗系粗碎屑地层碎屑锆石同位素年代学研究的黑海地区石炭纪-三叠纪岩浆活动分期
. 本文介绍了Mnt顶部和西斜坡侏罗纪粗岩碎屑锆石的U-Pb同位素定年结果。Biyuk-Sinor(拜达尔盆地的南墙,靠近Orlinoe村)。这些日期与上侏罗统粗碎屑地层砂质岩的碎屑锆石日期进行了比较。巴拉克拉瓦港和蒙特州附近的斯皮利亚。靠近Alushta市的南部Demerdzhi,以及靠近Strogonovka村(辛菲罗波尔市郊区)的中侏罗世Bitak砾岩。对比表明,各主要碎屑锆石种群的平均年龄特征具有高度的相似性。在克里米亚山区的4个地点采集了侏罗纪粗碎屑地层砂质岩进行锆石定年。根据它们的年代和克里米亚南部海岸砂岩碎屑锆石颗粒的年龄总结,我们可以为黑海地区的岩浆活动提供一个从中侏罗世到新近纪的地层间隔(360-200 Ma)的统计可靠的说明。这一时期在时间上受到晚泥盆世和早侏罗世相对岩浆间歇期的限制。石炭纪-三叠纪的锆石颗粒均未显示hf同位素特征,表明中元古代以上的地壳物质对母锆石的原岩有显著贡献。在石炭纪—三叠纪岩浆活动区间,可划分为(I) 360 ~ 315 Ma、(II) 315 ~ 270 Ma和(III) 270 ~ 200 Ma三个阶段。岩浆期1 (360 ~ 315 Ma)与Reik洋的闭合有关,在俯冲板块“断裂”进入地幔后完成,并伴有普遍表现的HT-LP变质作用。第一阶段锆石颗粒的峰值年龄约为325 ~ 340 Ma, ε Hf为负。岩浆阶段II (315-270 Ma)和阶段III (270-200 Ma)与斯基泰-庞特火山上俯冲带的功能有关。在这些岩浆阶段,锆石ε Hf值从弱负向显著正(指贫地幔)分散,这是火山弧的典型特征。第二阶段和第三阶段的模糊分离和锆石峰值年龄的强烈变化(我们将其与这两个阶段联系起来)可能是由于带不同段的岩浆活动的变化,以及在随后的阶段演化中,古特提斯海洋及其海洋周围构造的构造重排引起的带结晶复合体侵蚀强度的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geodynamics & Tectonophysics
Geodynamics & Tectonophysics GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.20
自引率
14.30%
发文量
95
审稿时长
24 weeks
期刊介绍: The purpose of the journal is facilitating awareness of the international scientific community of new data on geodynamics of continental lithosphere in a wide range of geolchronological data, as well as tectonophysics as an integral part of geodynamics, in which physico-mathematical and structural-geological concepts are applied to deal with topical problems of the evolution of structures and processes taking place simultaneously in the lithosphere. Complex geological and geophysical studies of the Earth tectonosphere have been significantly enhanced in the current decade across the world. As a result, a large number of publications are developed based on thorough analyses of paleo- and modern geodynamic processes with reference to results of properly substantiated physical experiments, field data and tectonophysical calculations. Comprehensive research of that type, followed by consolidation and generalization of research results and conclusions, conforms to the start-of-the-art of the Earth’s sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信