Foreground detection using background subtraction with histogram

M. Nawaz, J. Cosmas, A. Adnan, M. F. U. Haq, E. Alazawi
{"title":"Foreground detection using background subtraction with histogram","authors":"M. Nawaz, J. Cosmas, A. Adnan, M. F. U. Haq, E. Alazawi","doi":"10.1109/BMSB.2013.6621707","DOIUrl":null,"url":null,"abstract":"In the background subtraction method one of the core issue is; how to setup the threshold value precisely at run time, which can ultimately overcome several bugs of this approach in the foreground detection. In the proposed algorithm the key feature of any foreground detection algorithm; motion is used however getting the threshold value from the original motion histogram is not possible, so for the said purpose smooth motion histogram is used in a systematic way to obtain the threshold value. In the proposed algorithm the main focus is to get a better estimation of threshold so that to get a dynamic value, from histogram at run time. If the proposed algorithm is used intelligently in terms of motion magnitude and motion direction it can distinguish accurately between background and foreground, camera motion along with camera motion and object motion.","PeriodicalId":6311,"journal":{"name":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","volume":"43 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMSB.2013.6621707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the background subtraction method one of the core issue is; how to setup the threshold value precisely at run time, which can ultimately overcome several bugs of this approach in the foreground detection. In the proposed algorithm the key feature of any foreground detection algorithm; motion is used however getting the threshold value from the original motion histogram is not possible, so for the said purpose smooth motion histogram is used in a systematic way to obtain the threshold value. In the proposed algorithm the main focus is to get a better estimation of threshold so that to get a dynamic value, from histogram at run time. If the proposed algorithm is used intelligently in terms of motion magnitude and motion direction it can distinguish accurately between background and foreground, camera motion along with camera motion and object motion.
利用直方图的背景减法进行前景检测
背景减法中一个核心问题是;如何在运行时精确设置阈值,最终克服该方法在前景检测中的几个缺陷。该算法具有任何前景检测算法的关键特征;使用了运动,但是无法从原始的运动直方图中获得阈值,因此为了达到上述目的,系统地使用平滑的运动直方图来获得阈值。在该算法中,重点是对阈值进行更好的估计,以便在运行时从直方图中获得动态值。如果在运动幅度和运动方向上智能地使用该算法,则可以准确地区分背景和前景、摄像机运动以及摄像机运动和物体运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信