Interactive Inverse Spatio-Temporal Crowd Motion Design

T. Mathew, Bedrich Benes, Daniel G. Aliaga
{"title":"Interactive Inverse Spatio-Temporal Crowd Motion Design","authors":"T. Mathew, Bedrich Benes, Daniel G. Aliaga","doi":"10.1145/3384382.3384528","DOIUrl":null,"url":null,"abstract":"We introduce a new inverse modeling method to interactively design crowd animations. Few works focus on providing succinct high-level and large-scale crowd motion modeling. Our methodology is to read in real or virtual agent trajectory data and automatically infer a set of parameterized crowd motion models. Then, components of the motion models can be mixed, matched, and altered enabling rapidly producing new crowd motions. Our results show novel animations using real-world data, using synthetic data, and imitating real-world scenarios. Moreover, by combining our method with our interactive crowd trajectory sketching tool, we can create complex spatio-temporal crowd animations in about a minute.","PeriodicalId":91160,"journal":{"name":"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3384382.3384528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We introduce a new inverse modeling method to interactively design crowd animations. Few works focus on providing succinct high-level and large-scale crowd motion modeling. Our methodology is to read in real or virtual agent trajectory data and automatically infer a set of parameterized crowd motion models. Then, components of the motion models can be mixed, matched, and altered enabling rapidly producing new crowd motions. Our results show novel animations using real-world data, using synthetic data, and imitating real-world scenarios. Moreover, by combining our method with our interactive crowd trajectory sketching tool, we can create complex spatio-temporal crowd animations in about a minute.
交互式逆时空人群运动设计
提出了一种新的逆建模方法,用于人群动画的交互设计。很少有作品专注于提供简洁的高层次和大规模的人群运动建模。我们的方法是读取真实或虚拟的智能体轨迹数据,并自动推断出一组参数化的人群运动模型。然后,运动模型的组件可以混合,匹配和改变,从而快速产生新的人群运动。我们的研究结果展示了使用真实世界数据、合成数据和模仿真实世界场景的新颖动画。此外,通过将我们的方法与我们的交互式人群轨迹素描工具相结合,我们可以在大约一分钟内创建复杂的时空人群动画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信