Distributed Primal-Dual Proximal Method for Regularized Empirical Risk Minimization

M. B. Khuzani
{"title":"Distributed Primal-Dual Proximal Method for Regularized Empirical Risk Minimization","authors":"M. B. Khuzani","doi":"10.1109/ICMLA.2018.00152","DOIUrl":null,"url":null,"abstract":"Most high-dimensional estimation and classification methods propose to minimize a loss function (empirical risk) that is the sum of losses associated with each observed data point. We consider the special case of binary classification problems, where the loss is a function of the inner product of the feature vectors and a weight vector. For this special class of classification tasks, the empirical risk minimization problem can be recast as a minimax optimization which has a unique saddle point when the losses are smooth functions. We propose a distributed proximal primal-dual method to solve the minimax problem. We also analyze the convergence of the proposed primal-dual method and show its convergence to the unique saddle point. To prove the convergence results, we present a novel analysis of the consensus terms that takes into account the non-Euclidean geometry of the parameter space. We also numerically verify the convergence of the proposed algorithm for the logistic regression on the Erdos-Reyni random graphs and lattices.","PeriodicalId":74528,"journal":{"name":"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications","volume":"17 1","pages":"938-945"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most high-dimensional estimation and classification methods propose to minimize a loss function (empirical risk) that is the sum of losses associated with each observed data point. We consider the special case of binary classification problems, where the loss is a function of the inner product of the feature vectors and a weight vector. For this special class of classification tasks, the empirical risk minimization problem can be recast as a minimax optimization which has a unique saddle point when the losses are smooth functions. We propose a distributed proximal primal-dual method to solve the minimax problem. We also analyze the convergence of the proposed primal-dual method and show its convergence to the unique saddle point. To prove the convergence results, we present a novel analysis of the consensus terms that takes into account the non-Euclidean geometry of the parameter space. We also numerically verify the convergence of the proposed algorithm for the logistic regression on the Erdos-Reyni random graphs and lattices.
正则化经验风险最小化的分布原-对偶近端方法
大多数高维估计和分类方法建议最小化损失函数(经验风险),即与每个观测数据点相关的损失总和。我们考虑二元分类问题的特殊情况,其中损失是特征向量和权向量的内积的函数。对于这类特殊的分类任务,当损失为光滑函数时,经验风险最小化问题可以转化为具有唯一鞍点的极大极小优化问题。提出了一种求解极大极小问题的分布式近端原始对偶方法。我们还分析了所提出的原对偶方法的收敛性,并证明了其收敛到唯一鞍点。为了证明收敛性结果,我们提出了一种考虑参数空间的非欧几里德几何的一致项的新分析。在Erdos-Reyni随机图和格上验证了该算法的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信