Singular vector decomposition based adaptive transform for motion compensation residuals

Xiaoran Cao, Yun He
{"title":"Singular vector decomposition based adaptive transform for motion compensation residuals","authors":"Xiaoran Cao, Yun He","doi":"10.1109/ICIP.2014.7025838","DOIUrl":null,"url":null,"abstract":"Video coding standards commonly use discrete cosine transform (DCT) to transform the motion compensation (M-C) residuals. However, the MC residuals have much weaker correlation than image pixels, and DCT is not the optimized transform for them. In this paper, we propose an adaptive transform structure for MC residuals. Unlike traditional approaches which use a predefined transform core, we apply singular value decomposition (SVD) on the prediction block and use the eigenvector matrices as the transform core. Experiments show that this adaptive transform is more efficient compared with the traditional approach. An average 2.0% bit rate reduction is achieved when implemented on H.265/HEVC.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"35 1","pages":"4127-4131"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Video coding standards commonly use discrete cosine transform (DCT) to transform the motion compensation (M-C) residuals. However, the MC residuals have much weaker correlation than image pixels, and DCT is not the optimized transform for them. In this paper, we propose an adaptive transform structure for MC residuals. Unlike traditional approaches which use a predefined transform core, we apply singular value decomposition (SVD) on the prediction block and use the eigenvector matrices as the transform core. Experiments show that this adaptive transform is more efficient compared with the traditional approach. An average 2.0% bit rate reduction is achieved when implemented on H.265/HEVC.
基于奇异向量分解的运动补偿残差自适应变换
视频编码标准常用离散余弦变换(DCT)对运动补偿残差进行变换。然而,残差与图像像素的相关性要弱得多,DCT并不是残差的最佳变换。本文提出了一种MC残差的自适应变换结构。与传统方法使用预定义的变换核不同,我们在预测块上应用奇异值分解(SVD),并使用特征向量矩阵作为变换核。实验表明,与传统方法相比,这种自适应变换具有更高的效率。在H.265/HEVC上实现时,比特率平均降低2.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信