Variability of Drop Size Distributions: Noise and Noise Filtering in Disdrometric Data

Gyuwon Lee, I. Zawadzki
{"title":"Variability of Drop Size Distributions: Noise and Noise Filtering in Disdrometric Data","authors":"Gyuwon Lee, I. Zawadzki","doi":"10.1175/JAM2222.1","DOIUrl":null,"url":null,"abstract":"Abstract Disdrometric measurements are affected by the spurious variability due to drop sorting, small sampling volume, and instrumental noise. As a result, analysis methods that use least squares regression to derive rainfall rate–radar reflectivity (R–Z) relationships or studies of drop size distributions can lead to erroneous conclusions. This paper explores the importance of this variability and develops a new approach, referred to as the sequential intensity filtering technique (SIFT), that minimizes the effect of the spurious variability on disdrometric data. A simple correction for drop sorting in stratiform rain illustrates that it generates a significant amount of spurious variability and is prominent in small drops. SIFT filters out this spurious variability while maintaining the physical variability, as evidenced by stable R–Z relationships that are independent of averaging size and by a drastic decrease of the scatter in R–Z plots. The presence of scatter causes various regression methods to y...","PeriodicalId":15026,"journal":{"name":"Journal of Applied Meteorology","volume":"51 1","pages":"634-652"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/JAM2222.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

Abstract

Abstract Disdrometric measurements are affected by the spurious variability due to drop sorting, small sampling volume, and instrumental noise. As a result, analysis methods that use least squares regression to derive rainfall rate–radar reflectivity (R–Z) relationships or studies of drop size distributions can lead to erroneous conclusions. This paper explores the importance of this variability and develops a new approach, referred to as the sequential intensity filtering technique (SIFT), that minimizes the effect of the spurious variability on disdrometric data. A simple correction for drop sorting in stratiform rain illustrates that it generates a significant amount of spurious variability and is prominent in small drops. SIFT filters out this spurious variability while maintaining the physical variability, as evidenced by stable R–Z relationships that are independent of averaging size and by a drastic decrease of the scatter in R–Z plots. The presence of scatter causes various regression methods to y...
液滴大小分布的可变性:非对称数据中的噪声和噪声滤波
非对称测量受到由于下降分选、小采样体积和仪器噪声引起的杂散变异性的影响。因此,使用最小二乘回归来推导降雨率-雷达反射率(R-Z)关系的分析方法或水滴大小分布的研究可能导致错误的结论。本文探讨了这种可变性的重要性,并开发了一种新的方法,称为顺序强度滤波技术(SIFT),该方法可以最大限度地减少虚假可变性对非对称数据的影响。对层状雨中雨滴分选的简单校正表明,它会产生大量的伪变率,在小雨滴中尤为突出。SIFT滤除了这种虚假的变异性,同时保持了物理变异性,这一点可以通过稳定的R-Z关系来证明,这种关系与平均尺寸无关,并且R-Z图中的散点急剧减少。散点的存在导致各种回归方法对y…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信