Channel estimation via oblique matching pursuit for FDD massive MIMO downlink

Minhyun Kim, Junho Lee, Gye-Tae Gil, Y. H. Lee
{"title":"Channel estimation via oblique matching pursuit for FDD massive MIMO downlink","authors":"Minhyun Kim, Junho Lee, Gye-Tae Gil, Y. H. Lee","doi":"10.1109/ICCW.2015.7247317","DOIUrl":null,"url":null,"abstract":"We consider channel estimation for massive multiple-input multiple-output (MIMO) systems operating in frequency division duplexing (FDD) mode. By exploiting the sparsity of significant propagation paths in massive MIMO channels, we develop a compressed sensing (CS) based channel estimator that can reduce the pilot overhead as compared with the conventional least squares (LS) and minimum mean square error (MMSE) estimators. The proposed scheme is based on the oblique matching pursuit (ObMP), an extension of the orthogonal matching pursuit (OMP), that can exploit prior information about the sparse signal vector. Given the channel covariance matrix, we obtain the incidence probability that each quantized angle coincides with the angle-of-departure (AoD) and use the incidence probability for deriving the oblique operator of the proposed scheme. The pilot sequence is designed to minimize the MSE of the oracle estimator. The simulation results demonstrate the advantage of the proposed scheme over various existing methods including the LS, MMSE and OMP estimators.","PeriodicalId":6464,"journal":{"name":"2015 IEEE International Conference on Communication Workshop (ICCW)","volume":"2015 1","pages":"1060-1064"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Communication Workshop (ICCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2015.7247317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We consider channel estimation for massive multiple-input multiple-output (MIMO) systems operating in frequency division duplexing (FDD) mode. By exploiting the sparsity of significant propagation paths in massive MIMO channels, we develop a compressed sensing (CS) based channel estimator that can reduce the pilot overhead as compared with the conventional least squares (LS) and minimum mean square error (MMSE) estimators. The proposed scheme is based on the oblique matching pursuit (ObMP), an extension of the orthogonal matching pursuit (OMP), that can exploit prior information about the sparse signal vector. Given the channel covariance matrix, we obtain the incidence probability that each quantized angle coincides with the angle-of-departure (AoD) and use the incidence probability for deriving the oblique operator of the proposed scheme. The pilot sequence is designed to minimize the MSE of the oracle estimator. The simulation results demonstrate the advantage of the proposed scheme over various existing methods including the LS, MMSE and OMP estimators.
基于倾斜匹配跟踪的FDD海量MIMO下行信道估计
研究了在频分双工(FDD)模式下运行的大规模多输入多输出(MIMO)系统的信道估计问题。通过利用大规模MIMO信道中重要传播路径的稀疏性,我们开发了一种基于压缩感知(CS)的信道估计器,与传统的最小二乘(LS)和最小均方误差(MMSE)估计器相比,它可以减少导频开销。该方案基于斜匹配追踪(ObMP),它是正交匹配追踪(OMP)的扩展,可以利用稀疏信号向量的先验信息。给定信道协方差矩阵,我们得到了每个量化角与出发角重合的关联概率,并利用该关联概率推导出该方案的斜算子。导频序列的设计是为了最小化oracle估计器的MSE。仿真结果表明,该方法优于LS、MMSE和OMP估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信