Design and implementation of a low power spike detection processor for 128-channel spike sorting microsystem

Tsung-Chuan Ma, Tung-Chien Chen, Liang-Gee Chen
{"title":"Design and implementation of a low power spike detection processor for 128-channel spike sorting microsystem","authors":"Tsung-Chuan Ma, Tung-Chien Chen, Liang-Gee Chen","doi":"10.1109/ICASSP.2014.6854330","DOIUrl":null,"url":null,"abstract":"It is impractical to apply a general spike sorting algorithm for every subject because of the individual characteristics of brain signal. Furthermore, extracting more neural activities for higher accuracy of spike sorting requires more input electrodes as well as large power consumption and chip area. Therefore, several practical constraints are considered in this work when implementing a programmable spike sorting hardware with large number of input channels. In this paper, we provide a 128-channel spike detection processor for spike sorting microsystem without compromise of the power efficiency. This chip consumes only 87.02uW and 9.7uW/mm2 of power density, fabricated with 90nm low-leakage CMOS process.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"151 1","pages":"3889-3892"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

It is impractical to apply a general spike sorting algorithm for every subject because of the individual characteristics of brain signal. Furthermore, extracting more neural activities for higher accuracy of spike sorting requires more input electrodes as well as large power consumption and chip area. Therefore, several practical constraints are considered in this work when implementing a programmable spike sorting hardware with large number of input channels. In this paper, we provide a 128-channel spike detection processor for spike sorting microsystem without compromise of the power efficiency. This chip consumes only 87.02uW and 9.7uW/mm2 of power density, fabricated with 90nm low-leakage CMOS process.
128通道尖峰分选微系统低功耗尖峰检测处理器的设计与实现
由于脑信号的个体特征,对每一个被试应用一个通用的脉冲排序算法是不切实际的。此外,提取更多的神经活动以获得更高的尖峰分类精度需要更多的输入电极,并且需要更大的功耗和芯片面积。因此,在实现具有大量输入通道的可编程尖峰排序硬件时,本工作考虑了几个实际限制。本文在不影响功耗的前提下,为脉冲分选微系统提供了一种128通道的脉冲检测处理器。该芯片功耗仅为87.02uW,功率密度为9.7uW/mm2,采用90nm低漏CMOS工艺制作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信