Chronus

Wei Gao, Zhisheng Ye, P. Sun, Yonggang Wen, Tianwei Zhang
{"title":"Chronus","authors":"Wei Gao, Zhisheng Ye, P. Sun, Yonggang Wen, Tianwei Zhang","doi":"10.1145/3472883.3486978","DOIUrl":null,"url":null,"abstract":"Modern GPU clusters support Deep Learning training (DLT) jobs in a distributed manner. Job scheduling is the key to improve the training performance, resource utilization and fairness across users. Different training jobs may require various objectives and demands in terms of completion time. How to efficiently satisfy all these requirements is not extensively studied. We present Chronus, an end-to-end scheduling system to provide deadline guarantee for SLO jobs and maximize the performance of best-effort jobs. Chronus is designed based on the unique features of DLT jobs. (1) It leverages the intra-job predictability of DLT processes to efficiently profile jobs and estimate their runtime speed with dynamic resource scaling. (2) It takes advantages of the DLT preemption feature to select jobs with a lease-based training scheme. (3) It considers the placement sensitivity of DLT jobs to allocate resources with new consolidation and local-search strategies. Large-scale simulations on real-world job traces show that Chronus can reduce the deadline miss rate of SLO jobs by up to 14.7x, and the completion time of best-effort jobs by up to 19.9x, compared to existing schedulers. We also implement a prototype of Chronus atop Kubernents in a cluster of 120 GPUs to validate its practicability.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472883.3486978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Modern GPU clusters support Deep Learning training (DLT) jobs in a distributed manner. Job scheduling is the key to improve the training performance, resource utilization and fairness across users. Different training jobs may require various objectives and demands in terms of completion time. How to efficiently satisfy all these requirements is not extensively studied. We present Chronus, an end-to-end scheduling system to provide deadline guarantee for SLO jobs and maximize the performance of best-effort jobs. Chronus is designed based on the unique features of DLT jobs. (1) It leverages the intra-job predictability of DLT processes to efficiently profile jobs and estimate their runtime speed with dynamic resource scaling. (2) It takes advantages of the DLT preemption feature to select jobs with a lease-based training scheme. (3) It considers the placement sensitivity of DLT jobs to allocate resources with new consolidation and local-search strategies. Large-scale simulations on real-world job traces show that Chronus can reduce the deadline miss rate of SLO jobs by up to 14.7x, and the completion time of best-effort jobs by up to 19.9x, compared to existing schedulers. We also implement a prototype of Chronus atop Kubernents in a cluster of 120 GPUs to validate its practicability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信