CHARACTERIZING S-PROJECTIVE MODULES AND S-SEMISIMPLE RINGS BY UNIFORMITY

IF 0.3 4区 数学 Q4 MATHEMATICS
Xiaolei Zhang, W. Qi
{"title":"CHARACTERIZING S-PROJECTIVE MODULES AND S-SEMISIMPLE RINGS BY UNIFORMITY","authors":"Xiaolei Zhang, W. Qi","doi":"10.1216/jca.2023.15.139","DOIUrl":null,"url":null,"abstract":"Let $R$ be a ring and $S$ a multiplicative subset of $R$. An $R$-module $P$ is called uniformly $S$-projective provided that the induced sequence $0\\rightarrow \\mathrm{Hom}_R(P,A)\\rightarrow \\mathrm{Hom}_R(P,B)\\rightarrow \\mathrm{Hom}_R(P,C)\\rightarrow 0$ is $u$-$S$-exact for any $u$-$S$-short exact sequence $0\\rightarrow A\\rightarrow B\\rightarrow C\\rightarrow 0$. Some characterizations and properties of $u$-$S$-projective modules are obtained. The notion of $u$-$S$-semisimple modules is also introduced. A ring $R$ is called a $u$-$S$-semisimple ring provided that any free $R$-module is $u$-$S$-semisimple. Several characterizations of $u$-$S$-semisimple rings are provided in terms of $u$-$S$-semisimple modules, $u$-$S$-projective modules, $u$-$S$-injective modules and $u$-$S$-split $u$-$S$-exact sequences.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"271 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commutative Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2023.15.139","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

Let $R$ be a ring and $S$ a multiplicative subset of $R$. An $R$-module $P$ is called uniformly $S$-projective provided that the induced sequence $0\rightarrow \mathrm{Hom}_R(P,A)\rightarrow \mathrm{Hom}_R(P,B)\rightarrow \mathrm{Hom}_R(P,C)\rightarrow 0$ is $u$-$S$-exact for any $u$-$S$-short exact sequence $0\rightarrow A\rightarrow B\rightarrow C\rightarrow 0$. Some characterizations and properties of $u$-$S$-projective modules are obtained. The notion of $u$-$S$-semisimple modules is also introduced. A ring $R$ is called a $u$-$S$-semisimple ring provided that any free $R$-module is $u$-$S$-semisimple. Several characterizations of $u$-$S$-semisimple rings are provided in terms of $u$-$S$-semisimple modules, $u$-$S$-projective modules, $u$-$S$-injective modules and $u$-$S$-split $u$-$S$-exact sequences.
用均匀性刻画s -射影模和s -半单环
设$R$是一个环,$S$是$R$的乘积子集。一个$R$-模$P$被称为一致$S$-投影,只要导出序列$0\rightarrow \mathrm{hm}_R(P,A)\rightarrow \mathrm{hm}_R(P,B)\rightarrow \mathrm{hm}_R(P,C)\rightarrow 0$对于任何$u$-$S$-短精确序列$0\rightarrow A\right tarrow B\right tarrow C\right tarrow 0$都是$u$-$S$-精确。得到了$u$-$S$-射影模的一些刻画和性质。引入了$u$-$S$半简单模块的概念。环$R$称为$u$-$S$-半简单环,前提是任何自由的$R$-模块都是$u$-$S$-半简单环。给出了$u$-$S$-半单环的若干刻画,包括$u$-$S$-半单模、$u$-$S$-投影模、$u$-$S$-内射模和$u$-$S$-分裂$u$-$S$-精确序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
16.70%
发文量
28
审稿时长
>12 weeks
期刊介绍: Journal of Commutative Algebra publishes significant results in the area of commutative algebra and closely related fields including algebraic number theory, algebraic geometry, representation theory, semigroups and monoids. The journal also publishes substantial expository/survey papers as well as conference proceedings. Any person interested in editing such a proceeding should contact one of the managing editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信