Venkatraj Athikesavan, S. Bhuvana, G. Thilakavathi
{"title":"Structural and Electrical Properties of Pb (Mg1 / 3Nb2 / 3) O3-Pb (Yb1 / 2Nb1 / 2) O3-PbTiO3 Ternary Ceramic for Energy Storage Application","authors":"Venkatraj Athikesavan, S. Bhuvana, G. Thilakavathi","doi":"10.1080/07315171.2022.2122415","DOIUrl":null,"url":null,"abstract":"Abstract The polycrystalline ternary ferroelectric ceramic of PMN-PYN-PT (PMN = PbMg1/3Nb2/3O3, PYN = PbYbl/3Nb2/3O3, PT = PbTiO3) were synthesized by conventional solid state reaction technique. The structural, electrical and energy-storage properties of the ceramic were investigated. X-ray diffraction studies reveal that the ceramic has a coexistence of both tetragonal and rhombohedral phases. Dielectric studies of the sintered samples were studied as a function of temperature ranging from room temperature to 400 °C and in the wide frequency range of 1–50 kHz which shows good relaxor behavior. P-E hysteresis loops for the ceramic confirm good ferroelectric properties, exhibiting at (Pr ∼ 17.5 µC cm−2, Ec ∼ 36.5 and Pm ∼ 20.3) were obtained for PMN-PYN-PT. Energy storage density (W) of 0.13 Jcm−3 was achieved at 50 kV/cm1. The optimum piezoelectric coefficient and piezoelectric voltage coefficient (d33 ∼ 412 pC/N, g33 ∼1.6) measured on the poled sample for PMN-PYN-PT, respectively. From these analyses, the reported ceramic is a promising candidate for energy-storage capacitor applications.","PeriodicalId":50451,"journal":{"name":"Ferroelectrics Letters Section","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferroelectrics Letters Section","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/07315171.2022.2122415","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract The polycrystalline ternary ferroelectric ceramic of PMN-PYN-PT (PMN = PbMg1/3Nb2/3O3, PYN = PbYbl/3Nb2/3O3, PT = PbTiO3) were synthesized by conventional solid state reaction technique. The structural, electrical and energy-storage properties of the ceramic were investigated. X-ray diffraction studies reveal that the ceramic has a coexistence of both tetragonal and rhombohedral phases. Dielectric studies of the sintered samples were studied as a function of temperature ranging from room temperature to 400 °C and in the wide frequency range of 1–50 kHz which shows good relaxor behavior. P-E hysteresis loops for the ceramic confirm good ferroelectric properties, exhibiting at (Pr ∼ 17.5 µC cm−2, Ec ∼ 36.5 and Pm ∼ 20.3) were obtained for PMN-PYN-PT. Energy storage density (W) of 0.13 Jcm−3 was achieved at 50 kV/cm1. The optimum piezoelectric coefficient and piezoelectric voltage coefficient (d33 ∼ 412 pC/N, g33 ∼1.6) measured on the poled sample for PMN-PYN-PT, respectively. From these analyses, the reported ceramic is a promising candidate for energy-storage capacitor applications.
期刊介绍:
Ferroelectrics Letters is a separately published section of the international journal Ferroelectrics. Both sections publish theoretical, experimental and applied papers on ferroelectrics and related materials, including ferroelastics, ferroelectric ferromagnetics, electrooptics, piezoelectrics, pyroelectrics, nonlinear dielectrics, polymers and liquid crystals.
Ferroelectrics Letters permits the rapid publication of important, quality, short original papers on the theory, synthesis, properties and applications of ferroelectrics and related materials.