On the competitive facility location problem with a Bayesian spatial interaction model

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Shanaka Perera, Virginia Aglietti, T. Damoulas
{"title":"On the competitive facility location problem with a Bayesian spatial interaction model","authors":"Shanaka Perera, Virginia Aglietti, T. Damoulas","doi":"10.1093/jrsssc/qlad003","DOIUrl":null,"url":null,"abstract":"\n The competitive facility location problem arises when businesses plan to enter a new market or expand their presence. We introduce a Bayesian spatial interaction model which provides probabilistic estimates on location-specific revenues and then formulate a mathematical framework to simultaneously identify the location and design of new facilities that maximise revenue. To solve the allocation optimisation problem, we develop a hierarchical search algorithm and associated sampling techniques that explore geographic regions of varying spatial resolution. We demonstrate the approach by producing optimal facility locations and corresponding designs for two large-scale applications in the supermarket and pub sectors of Greater London.","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The competitive facility location problem arises when businesses plan to enter a new market or expand their presence. We introduce a Bayesian spatial interaction model which provides probabilistic estimates on location-specific revenues and then formulate a mathematical framework to simultaneously identify the location and design of new facilities that maximise revenue. To solve the allocation optimisation problem, we develop a hierarchical search algorithm and associated sampling techniques that explore geographic regions of varying spatial resolution. We demonstrate the approach by producing optimal facility locations and corresponding designs for two large-scale applications in the supermarket and pub sectors of Greater London.
基于贝叶斯空间相互作用模型的竞争性设施选址问题
当企业计划进入一个新市场或扩大其存在时,竞争性设施选址问题就会出现。我们引入了一个贝叶斯空间相互作用模型,该模型提供了特定地点收入的概率估计,然后制定了一个数学框架,以同时确定收入最大化的新设施的位置和设计。为了解决分配优化问题,我们开发了一种分层搜索算法和相关的采样技术,用于探索不同空间分辨率的地理区域。我们通过为大伦敦的超市和酒吧部门的两个大型应用程序提供最佳设施位置和相应的设计来展示这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies). A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信