Determination of Optimum Drying Temperature Profile by Iterative Learning Control (ILC) Method to Obtain a Desired Moisture Content in Tablets

Nahid Sanzida
{"title":"Determination of Optimum Drying Temperature Profile by Iterative Learning Control (ILC) Method to Obtain a Desired Moisture Content in Tablets","authors":"Nahid Sanzida","doi":"10.3329/CERB.V20I1.36923","DOIUrl":null,"url":null,"abstract":"The paper presents an industrial case study example to evaluate the performance of the linear time varying (LTV) perturbation model based iterative learning control (ILC) in a pilot scale batch system. The operating data based strategy applied here is based on utilizing the repetitive nature of batch processes to update the operating trajectories using process knowledge obtained from previous runs and thereby providing a convergent batch-to-batch improvement of the process performance indicator. The method was applied to determine the required drying temperature of Paracetamol granules to obtain desired moisture content at the end of the batch. After granulation operations, Paracetamol granules were dried in a fluid bed dryer in the pilot plant laboratory of GlaxoSmithKline Bangladesh Limited, Chittagong, Bangladesh. These results demonstrate the potential of the ILC approach for controlling batch processes without rigorous process models.Chemical Engineering Research Bulletin 20(2018) 1-7","PeriodicalId":9756,"journal":{"name":"Chemical Engineering Research Bulletin","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/CERB.V20I1.36923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The paper presents an industrial case study example to evaluate the performance of the linear time varying (LTV) perturbation model based iterative learning control (ILC) in a pilot scale batch system. The operating data based strategy applied here is based on utilizing the repetitive nature of batch processes to update the operating trajectories using process knowledge obtained from previous runs and thereby providing a convergent batch-to-batch improvement of the process performance indicator. The method was applied to determine the required drying temperature of Paracetamol granules to obtain desired moisture content at the end of the batch. After granulation operations, Paracetamol granules were dried in a fluid bed dryer in the pilot plant laboratory of GlaxoSmithKline Bangladesh Limited, Chittagong, Bangladesh. These results demonstrate the potential of the ILC approach for controlling batch processes without rigorous process models.Chemical Engineering Research Bulletin 20(2018) 1-7
用迭代学习控制(ILC)法确定最佳干燥温度曲线以获得所需的片剂水分含量
本文给出了一个工业实例,以评估基于线性时变(LTV)扰动模型的迭代学习控制(ILC)在中试批量系统中的性能。这里应用的基于操作数据的策略是基于利用批处理的重复特性,使用从以前运行中获得的过程知识来更新操作轨迹,从而提供过程性能指标的批对批的收敛改进。该方法用于确定对乙酰氨基酚颗粒所需的干燥温度,以在批末获得所需的水分含量。在造粒操作后,扑热息痛颗粒在孟加拉国吉大港葛兰素史克孟加拉国有限公司的试验工厂实验室的流化床干燥机中干燥。这些结果证明了ILC方法在没有严格过程模型的情况下控制批量过程的潜力。化工研究通报20(2018)1-7
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信