Ductile damage model of an alluminum alloy: experimental and numerical validation on a punch test

Q4 Engineering
M. Mastrone, L. Fraccaroli, F. Concli
{"title":"Ductile damage model of an alluminum alloy: experimental and numerical validation on a punch test","authors":"M. Mastrone, L. Fraccaroli, F. Concli","doi":"10.2495/cmem-v9-n3-249-260","DOIUrl":null,"url":null,"abstract":"The correct prediction of ductile fracture of mechanical components requires the knowledge of physical quantities that are in the plastic field. This region is characterized by non-linearities, and the classical yield criteria cannot be applied since they work only in the elastic field. It has been observed that parameters such as stress triaxiality and plastic strain play a determinant role in failure mechanisms. Thanks to simulation software, it is possible to implement the virtual models capable of calculating these parameters numerically by solving partial differential equations. These parameters can then be used to describe the fracture locus of a material that, in turn, allows to predict failure of a component. In this work, the Rice and Tracey damage model was calibrated for an aluminum alloy and validated on a punch test exploiting Finite Element Analysis. Good agreement between experimental observations and numerical results was obtained, demonstrating the capability of the considered model to predict failure on a real test case.","PeriodicalId":36958,"journal":{"name":"International Journal of Computational Methods and Experimental Measurements","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Methods and Experimental Measurements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/cmem-v9-n3-249-260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

The correct prediction of ductile fracture of mechanical components requires the knowledge of physical quantities that are in the plastic field. This region is characterized by non-linearities, and the classical yield criteria cannot be applied since they work only in the elastic field. It has been observed that parameters such as stress triaxiality and plastic strain play a determinant role in failure mechanisms. Thanks to simulation software, it is possible to implement the virtual models capable of calculating these parameters numerically by solving partial differential equations. These parameters can then be used to describe the fracture locus of a material that, in turn, allows to predict failure of a component. In this work, the Rice and Tracey damage model was calibrated for an aluminum alloy and validated on a punch test exploiting Finite Element Analysis. Good agreement between experimental observations and numerical results was obtained, demonstrating the capability of the considered model to predict failure on a real test case.
铝合金韧性损伤模型:冲压试验的实验与数值验证
正确预测机械部件的韧性断裂需要塑性领域的物理量知识。该区域具有非线性特征,经典屈服准则仅适用于弹性场,不能应用。应力三轴性和塑性应变等参数在破坏机制中起决定性作用。借助仿真软件,可以通过求解偏微分方程实现能够数值计算这些参数的虚拟模型。这些参数可以用来描述材料的断裂轨迹,进而预测部件的失效。在这项工作中,Rice和Tracey损伤模型针对铝合金进行了校准,并利用有限元分析在冲压试验中进行了验证。实验结果与数值结果吻合较好,证明了所考虑的模型在实际测试用例中预测故障的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
24
审稿时长
33 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信