Evaluation of large-scale unsupervised classification of New Caledonia reef ecosystems using Landsat 7 ETM+ imagery

Guénolé Bouvet , Jocelyne Ferraris , Serge Andréfouët
{"title":"Evaluation of large-scale unsupervised classification of New Caledonia reef ecosystems using Landsat 7 ETM+ imagery","authors":"Guénolé Bouvet ,&nbsp;Jocelyne Ferraris ,&nbsp;Serge Andréfouët","doi":"10.1016/S0399-1784(03)00012-4","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The capacity of the Landsat 7 Enhanced Thematic Mapper Plus sensor to classify the shallow benthic ecosytems of New Caledonia (South Pacific) is tested using a novel </span>unsupervised classification<span> method. The classes are defined by using a set of multiple spectral decision rules based on the image spectral bands. A general model is applied to the entire Southwest lagoon (5500 km</span></span><sup>2</sup><span><span>) and tested on three representative sites: a section of the barrier reef, a cay reef flat rich in corals, and a cay reef flat rich in algae and seagrass beds. In the latter one, the classification results are compared with a locally optimized model, with aerial color photographs and extensive ground-truthed observations. Results show that a </span>reconnaissance of the main benthic habitats in shallow areas (&lt;5 m depth) is possible, at a geomorphological scale for coral reef structure and at a habitat scale for seagrass beds. However, results directly issued from the model must be cautiously interpreted according to empirical spatial rules, especially to avoid confusion between coral slopes and shallow dense seagrass.</span></p></div>","PeriodicalId":100980,"journal":{"name":"Oceanologica Acta","volume":"26 3","pages":"Pages 281-290"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0399-1784(03)00012-4","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceanologica Acta","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0399178403000124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

The capacity of the Landsat 7 Enhanced Thematic Mapper Plus sensor to classify the shallow benthic ecosytems of New Caledonia (South Pacific) is tested using a novel unsupervised classification method. The classes are defined by using a set of multiple spectral decision rules based on the image spectral bands. A general model is applied to the entire Southwest lagoon (5500 km2) and tested on three representative sites: a section of the barrier reef, a cay reef flat rich in corals, and a cay reef flat rich in algae and seagrass beds. In the latter one, the classification results are compared with a locally optimized model, with aerial color photographs and extensive ground-truthed observations. Results show that a reconnaissance of the main benthic habitats in shallow areas (<5 m depth) is possible, at a geomorphological scale for coral reef structure and at a habitat scale for seagrass beds. However, results directly issued from the model must be cautiously interpreted according to empirical spatial rules, especially to avoid confusion between coral slopes and shallow dense seagrass.

基于Landsat 7 ETM+影像的新喀里多尼亚珊瑚礁生态系统大尺度无监督分类评价
使用一种新的无监督分类方法测试了Landsat 7 Enhanced Thematic Mapper Plus传感器对新喀里多尼亚(南太平洋)浅层底栖生态系统进行分类的能力。分类是基于图像光谱带的一组多光谱决策规则来定义的。一般模型应用于整个西南泻湖(5500平方公里),并在三个代表性地点进行了测试:堡礁的一部分,富含珊瑚的礁滩,以及富含藻类和海草床的礁滩。在后者中,分类结果与局部优化模型进行比较,该模型具有航空彩色照片和大量的地面真实观测。结果表明,在珊瑚礁结构的地貌尺度和海草床的生境尺度上,可以对浅层(5 m深度)的主要底栖生物栖息地进行侦察。但是,直接从模型得出的结果必须根据经验空间规则谨慎解释,特别是要避免混淆珊瑚斜坡和浅层密集海草。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信