The Model of Wind Power Short-Term Prediction Based on Artificial Fish Swarm Algorithm of Support Vector Machine

Yang Zheng, Li Hong
{"title":"The Model of Wind Power Short-Term Prediction Based on Artificial Fish Swarm Algorithm of Support Vector Machine","authors":"Yang Zheng, Li Hong","doi":"10.1109/IICSPI.2018.8690469","DOIUrl":null,"url":null,"abstract":"In order to improve the accuracy of wind power prediction and solve the parameter selection problem of support vector machine(SVM)model for the wind power prediction, the artificial fish swarm algorithm(AFSA) is proposed to look for the support vector machine’s optimal parameter of kernel function and the parameter of error penalty. The model of AFSA-SVW is established to predict the wind power with the numerical weather forecast(NWP) data after clustering analysis. Form the result of simulation experiment, it shows that the model of AFSA-SVW has a higher accuracy than the model of BP and the model of BP and the model of BP and the model of PSO-SVM in the short-term wind power prediction.","PeriodicalId":6673,"journal":{"name":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","volume":"12 1","pages":"570-574"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI.2018.8690469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In order to improve the accuracy of wind power prediction and solve the parameter selection problem of support vector machine(SVM)model for the wind power prediction, the artificial fish swarm algorithm(AFSA) is proposed to look for the support vector machine’s optimal parameter of kernel function and the parameter of error penalty. The model of AFSA-SVW is established to predict the wind power with the numerical weather forecast(NWP) data after clustering analysis. Form the result of simulation experiment, it shows that the model of AFSA-SVW has a higher accuracy than the model of BP and the model of BP and the model of BP and the model of PSO-SVM in the short-term wind power prediction.
基于支持向量机人工鱼群算法的风电短期预测模型
为了提高风电功率预测的精度,解决支持向量机(SVM)模型用于风电功率预测的参数选择问题,提出了人工鱼群算法(AFSA)寻找支持向量机的最优核函数参数和误差惩罚参数。利用数值天气预报(NWP)数据进行聚类分析,建立了AFSA-SVW预测模型。仿真实验结果表明,AFSA-SVW模型在短期风电功率预测中具有比BP模型、BP模型、BP模型和PSO-SVM模型更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信