{"title":"Optimal stopping of Markov switching Lévy processes","authors":"M. Pemy","doi":"10.1080/17442508.2013.797422","DOIUrl":null,"url":null,"abstract":"We consider a finite time horizon optimal stopping of a regime-switching Lévy process. We prove that the value function of the optimal stopping problem can be characterized as the unique viscosity solution of the associated Hamilton–Jacobi–Bellman variational inequalities.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2014-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2013.797422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We consider a finite time horizon optimal stopping of a regime-switching Lévy process. We prove that the value function of the optimal stopping problem can be characterized as the unique viscosity solution of the associated Hamilton–Jacobi–Bellman variational inequalities.