State densities of heavy nuclei in the static-path plus random-phase approximation

P. Fanto, Y. Alhassid
{"title":"State densities of heavy nuclei in the static-path plus random-phase approximation","authors":"P. Fanto, Y. Alhassid","doi":"10.1103/PhysRevC.103.064310","DOIUrl":null,"url":null,"abstract":"Nuclear state densities are important inputs to statistical models of compound-nucleus reactions. State densities are often calculated with self-consistent mean-field approximations that do not include important correlations and have to be augmented with empirical collective enhancement factors. Here, we benchmark the static-path plus random-phase approximation (SPA+RPA) to the state density in a chain of samarium isotopes $^{148-155}$Sm against exact results (up to statistical errors) obtained with the shell model Monte Carlo (SMMC) method. The SPA+RPA method incorporates all static fluctuations beyond the mean field together with small-amplitude quantal fluctuations around each static fluctuation. Using a pairing plus quadrupole interaction, we show that the SPA+RPA state densities agree well with the exact SMMC densities for both the even- and odd-mass isotopes. For the even-mass isotopes, we also compare our results with mean-field state densities calculated with the finite-temperature Hartree-Fock-Bogoliubov (HFB) approximation. We find that the SPA+RPA repairs the deficiencies of the mean-field approximation associated with broken rotational symmetry in deformed nuclei and the violation of particle-number conservation in the pairing condensate. In particular, in deformed nuclei the SPA+RPA reproduces the rotational enhancement of the state density relative to the mean-field state density.","PeriodicalId":8463,"journal":{"name":"arXiv: Nuclear Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevC.103.064310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nuclear state densities are important inputs to statistical models of compound-nucleus reactions. State densities are often calculated with self-consistent mean-field approximations that do not include important correlations and have to be augmented with empirical collective enhancement factors. Here, we benchmark the static-path plus random-phase approximation (SPA+RPA) to the state density in a chain of samarium isotopes $^{148-155}$Sm against exact results (up to statistical errors) obtained with the shell model Monte Carlo (SMMC) method. The SPA+RPA method incorporates all static fluctuations beyond the mean field together with small-amplitude quantal fluctuations around each static fluctuation. Using a pairing plus quadrupole interaction, we show that the SPA+RPA state densities agree well with the exact SMMC densities for both the even- and odd-mass isotopes. For the even-mass isotopes, we also compare our results with mean-field state densities calculated with the finite-temperature Hartree-Fock-Bogoliubov (HFB) approximation. We find that the SPA+RPA repairs the deficiencies of the mean-field approximation associated with broken rotational symmetry in deformed nuclei and the violation of particle-number conservation in the pairing condensate. In particular, in deformed nuclei the SPA+RPA reproduces the rotational enhancement of the state density relative to the mean-field state density.
静态路径加随机相位近似中重核的态密度
核态密度是化合物核反应统计模型的重要输入。状态密度通常用自洽平均场近似计算,不包括重要的相关性,必须用经验集体增强因子进行增强。在这里,我们对钐同位素链$^{148-155}$Sm的静态路径加随机相位近似(SPA+RPA)与壳模型蒙特卡罗(SMMC)方法获得的精确结果(不包括统计误差)进行了基准测试。SPA+RPA方法结合了平均场以外的所有静态波动以及每个静态波动周围的小幅度量子波动。利用配对加四极相互作用,我们发现SPA+RPA态密度与偶质量和奇质量同位素的精确SMMC密度吻合得很好。对于等质量同位素,我们还将结果与有限温度Hartree-Fock-Bogoliubov (HFB)近似计算的平均场态密度进行了比较。我们发现,SPA+RPA修复了平均场近似与变形核的旋转对称性破坏和对凝聚体中粒子数守恒的违反有关的缺陷。特别是,在形变核中,相对于平均场态密度,SPA+RPA再现了态密度的旋转增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信