A complete invariant for closed surfaces in the three-sphere

G. Bellettini, M. Paolini, Yi-Sheng Wang
{"title":"A complete invariant for closed surfaces in the three-sphere","authors":"G. Bellettini, M. Paolini, Yi-Sheng Wang","doi":"10.1142/S0218216521500449","DOIUrl":null,"url":null,"abstract":"In this paper we use diagrams in categories to construct a complete invariant, the fundamental tree, for closed surfaces in the (based) $3$-sphere, which generalizes the knot group and its peripheral system. From the fundamental tree, we derive some computable invariants that are capable to distinguish inequivalent handlebody links with homeomorphic complements. To prove the completeness of the fundamental tree, we generalize the Kneser conjecture to $3$-manifolds with boundary, a topic interesting in its own right.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218216521500449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we use diagrams in categories to construct a complete invariant, the fundamental tree, for closed surfaces in the (based) $3$-sphere, which generalizes the knot group and its peripheral system. From the fundamental tree, we derive some computable invariants that are capable to distinguish inequivalent handlebody links with homeomorphic complements. To prove the completeness of the fundamental tree, we generalize the Kneser conjecture to $3$-manifolds with boundary, a topic interesting in its own right.
三球面上闭曲面的完全不变量
本文利用范畴图构造了(基)$3$球上闭曲面的完全不变量基本树,推广了结群及其外围系统。在基本树的基础上,我们得到了一些可计算的不变量,这些不变量能够区分具有同胚补的不等价柄体连杆。为了证明基本树的完备性,我们将Kneser猜想推广到具有边界的$3$流形,这本身就是一个有趣的话题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信