Synchronizing code execution on ultra-low-power embedded multi-channel signal analysis platforms

A. Dogan, R. Braojos, J. Constantin, G. Ansaloni, A. Burg, David Atienza Alonso
{"title":"Synchronizing code execution on ultra-low-power embedded multi-channel signal analysis platforms","authors":"A. Dogan, R. Braojos, J. Constantin, G. Ansaloni, A. Burg, David Atienza Alonso","doi":"10.7873/DATE.2013.090","DOIUrl":null,"url":null,"abstract":"Embedded biosignal analysis involves a considerable amount of parallel computations, which can be exploited by employing low-voltage and ultra-low-power (ULP) parallel computing architectures. By allowing data and instruction broadcasting, single instruction multiple data (SIMD) processing paradigm enables considerable power savings and application speedup, in turn allowing for a lower voltage supply for a given workload. The state-of-the-art multi-core architectures for biosignal analysis however lack a bare, yet smart, synchronization technique among the cores, allowing lockstep execution of algorithm parts that can be performed using the SIMD, even in the presence of data-dependent execution flows. In this paper, we propose a lightweight synchronization technique to enhance an ULP multi-core processor, resulting in improved energy efficiency through lockstep SIMD execution. Our results show that the proposed improvements accomplish tangible power savings, up to 64% for an 8-core system operating at a workload of 89 MOps/s while exploiting voltage scaling.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"17 1","pages":"396-399"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Embedded biosignal analysis involves a considerable amount of parallel computations, which can be exploited by employing low-voltage and ultra-low-power (ULP) parallel computing architectures. By allowing data and instruction broadcasting, single instruction multiple data (SIMD) processing paradigm enables considerable power savings and application speedup, in turn allowing for a lower voltage supply for a given workload. The state-of-the-art multi-core architectures for biosignal analysis however lack a bare, yet smart, synchronization technique among the cores, allowing lockstep execution of algorithm parts that can be performed using the SIMD, even in the presence of data-dependent execution flows. In this paper, we propose a lightweight synchronization technique to enhance an ULP multi-core processor, resulting in improved energy efficiency through lockstep SIMD execution. Our results show that the proposed improvements accomplish tangible power savings, up to 64% for an 8-core system operating at a workload of 89 MOps/s while exploiting voltage scaling.
超低功耗嵌入式多通道信号分析平台上的同步代码执行
嵌入式生物信号分析涉及大量的并行计算,可以通过采用低电压和超低功耗(ULP)并行计算架构来利用。通过允许数据和指令广播,单指令多数据(SIMD)处理范式可以显著节省功耗和提高应用程序速度,从而为给定的工作负载提供更低的电压。然而,用于生物信号分析的最先进的多核架构在核心之间缺乏一种简单而智能的同步技术,即使在存在依赖数据的执行流的情况下,也不能使用SIMD执行算法部分的同步执行。在本文中,我们提出了一种轻量级同步技术来增强ULP多核处理器,从而通过同步执行SIMD来提高能源效率。我们的结果表明,所提出的改进实现了切实的节能,在利用电压缩放的情况下,在工作负载为89 MOps/s的8核系统中,节能高达64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信