On the roots of polynomials with log-convex coefficients

Pub Date : 2022-02-15 DOI:10.4153/S0008414X22000062
M. A. Hernández Cifre, Miriam Tárraga, J. Yepes Nicolás
{"title":"On the roots of polynomials with log-convex coefficients","authors":"M. A. Hernández Cifre, Miriam Tárraga, J. Yepes Nicolás","doi":"10.4153/S0008414X22000062","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider the family of nth degree polynomials whose coefficients form a log-convex sequence (up to binomial weights), and investigate their roots. We study, among others, the structure of the set of roots of such polynomials, showing that it is a closed convex cone in the upper half-plane, which covers its interior when n tends to infinity, and giving its precise description for every \n$n\\in \\mathbb {N}$\n , \n$n\\geq 2$\n . Dual Steiner polynomials of star bodies are a particular case of them, and so we derive, as a consequence, further properties for their roots.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008414X22000062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we consider the family of nth degree polynomials whose coefficients form a log-convex sequence (up to binomial weights), and investigate their roots. We study, among others, the structure of the set of roots of such polynomials, showing that it is a closed convex cone in the upper half-plane, which covers its interior when n tends to infinity, and giving its precise description for every $n\in \mathbb {N}$ , $n\geq 2$ . Dual Steiner polynomials of star bodies are a particular case of them, and so we derive, as a consequence, further properties for their roots.
分享
查看原文
关于对数凸系数多项式的根
摘要本文考虑一类n次多项式,其系数构成一个对数-凸序列(不超过二项式权重),并研究了它们的根。我们研究了这些多项式的根集的结构,证明了它是上半平面上的一个闭凸锥,当n趋于无穷时,它覆盖了它的内部,并给出了它对每个$n\in \mathbb {N}$, $n\geq 2$的精确描述。星体的对偶斯坦纳多项式是它们的一个特例,因此我们推导出它们根的进一步性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信