{"title":"Phospholipase C activation by prostacyclin receptor agonist in cerebral microvascular smooth muscle cells.","authors":"P. A. Parkinson, H. Parfenova, C. Leffler","doi":"10.1111/j.1525-1373.2000.22307.x","DOIUrl":null,"url":null,"abstract":"The mechanism through which iloprost permits cerebral vasodilation induced by specific stimuli is incompletely understood. Previous study suggests there might be interplay between the adenylyl cyclase and phospholipase C (PLC) systems. Coupling of the prostacyclin receptor with the PLC pathway system was investigated. Iloprost, a stable prostacyclin analog, was used as a prostacyclin receptor agonist. We investigated the effects of iloprost (10-12-10-6 M) on inositol 1,4,5-trisphosphate (IP3) production by piglet cerebrovascular smooth muscle cells in primary culture. Iloprost caused concentration- and time-dependent increases in IP3 production in control cells and in cells pretreated with LiCl (to prevent further IP3 metabolism). Iloprost treatment (10-12 M) of cerebrovascular smooth muscle cells, in the absence and presence of 20 mM LiCl, resulted in 2-fold and 4-fold increases in the formation of IP3, respectively. In contrast, 10-10 M to 10-6 M iloprost, either in the presence or absence of LiCl, induced moderate or no increase in IP3 formation. Iloprost (10-10-10-12 M) strongly stimulated diacylglycerol (DAG) generation, whereas higher concentrations (10-8 M) did not induce an increase. In conclusion, the results suggest that prostacyclin receptors on cerebromicrovascular smooth muscle can couple to PLC, generating the second messengers, IP3 and DAG.","PeriodicalId":20618,"journal":{"name":"Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1525-1373.2000.22307.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The mechanism through which iloprost permits cerebral vasodilation induced by specific stimuli is incompletely understood. Previous study suggests there might be interplay between the adenylyl cyclase and phospholipase C (PLC) systems. Coupling of the prostacyclin receptor with the PLC pathway system was investigated. Iloprost, a stable prostacyclin analog, was used as a prostacyclin receptor agonist. We investigated the effects of iloprost (10-12-10-6 M) on inositol 1,4,5-trisphosphate (IP3) production by piglet cerebrovascular smooth muscle cells in primary culture. Iloprost caused concentration- and time-dependent increases in IP3 production in control cells and in cells pretreated with LiCl (to prevent further IP3 metabolism). Iloprost treatment (10-12 M) of cerebrovascular smooth muscle cells, in the absence and presence of 20 mM LiCl, resulted in 2-fold and 4-fold increases in the formation of IP3, respectively. In contrast, 10-10 M to 10-6 M iloprost, either in the presence or absence of LiCl, induced moderate or no increase in IP3 formation. Iloprost (10-10-10-12 M) strongly stimulated diacylglycerol (DAG) generation, whereas higher concentrations (10-8 M) did not induce an increase. In conclusion, the results suggest that prostacyclin receptors on cerebromicrovascular smooth muscle can couple to PLC, generating the second messengers, IP3 and DAG.