Thailand Raw Water Quality Dataset Analysis and Evaluation

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Jaturapith Krohkaew, Pongpon Nilaphruek, Niti Witthayawiroj, Sakchai Uapipatanakul, Yamin Thwe, Padma Nyoman Crisnapati
{"title":"Thailand Raw Water Quality Dataset Analysis and Evaluation","authors":"Jaturapith Krohkaew, Pongpon Nilaphruek, Niti Witthayawiroj, Sakchai Uapipatanakul, Yamin Thwe, Padma Nyoman Crisnapati","doi":"10.3390/data8090141","DOIUrl":null,"url":null,"abstract":"Sustainable water quality data are important for understanding historical variability and trends in river regimes, as well as the impact of industrial waste on the health of aquatic ecosystems. Sustainable water management practices heavily depend on reliable and comprehensive data, prompting the need for accurate monitoring and assessment of water quality parameters. This research describes a reconstructed daily water quality dataset that complements rare historical observations for six station points along the Chao Phraya River in Thailand. Internet of Things technology and a Eureka water probe sensor is used to collect and reconstruct the water quality dataset for the period from June 2022–February 2023, with Turbidity, Optical Dissolved Oxygen, Dissolved Oxygen Saturation, Spatial Conductivity, Acidity/Basicity, Total Dissolved Solids, Salinity, Temperature, Chlorophyll, and Depth as the recorded parameters from six different stations. The presented dataset comprises a total of 211,322 data points, which are separated into six CSV files. The dataset is then evaluated using the Long Short-Term Memory (LSTM) algorithm with a Mean Squared Error (MSE) of 0.0012256, and Root Mean Squared Error (RMSE) of 0.0350080. The proposed dataset provides valuable insights for researchers studying river ecosystems, supporting informed decision-making and sustainable water management practices.","PeriodicalId":55580,"journal":{"name":"Atomic Data and Nuclear Data Tables","volume":"4 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Data and Nuclear Data Tables","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/data8090141","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Sustainable water quality data are important for understanding historical variability and trends in river regimes, as well as the impact of industrial waste on the health of aquatic ecosystems. Sustainable water management practices heavily depend on reliable and comprehensive data, prompting the need for accurate monitoring and assessment of water quality parameters. This research describes a reconstructed daily water quality dataset that complements rare historical observations for six station points along the Chao Phraya River in Thailand. Internet of Things technology and a Eureka water probe sensor is used to collect and reconstruct the water quality dataset for the period from June 2022–February 2023, with Turbidity, Optical Dissolved Oxygen, Dissolved Oxygen Saturation, Spatial Conductivity, Acidity/Basicity, Total Dissolved Solids, Salinity, Temperature, Chlorophyll, and Depth as the recorded parameters from six different stations. The presented dataset comprises a total of 211,322 data points, which are separated into six CSV files. The dataset is then evaluated using the Long Short-Term Memory (LSTM) algorithm with a Mean Squared Error (MSE) of 0.0012256, and Root Mean Squared Error (RMSE) of 0.0350080. The proposed dataset provides valuable insights for researchers studying river ecosystems, supporting informed decision-making and sustainable water management practices.
泰国原水水质数据集分析与评价
可持续的水质数据对于了解河流状况的历史变化和趋势以及工业废物对水生生态系统健康的影响非常重要。可持续的水管理实践在很大程度上依赖于可靠和全面的数据,因此需要对水质参数进行准确的监测和评估。本研究描述了一个重建的每日水质数据集,该数据集补充了泰国湄南河沿岸六个站点的罕见历史观测数据。利用物联网技术和Eureka水探针传感器,以浊度、光学溶解氧、溶解氧饱和度、空间电导率、酸碱度、总溶解固形物、盐度、温度、叶绿素和深度作为6个不同站点的记录参数,采集并重建了2022年6月至2023年2月的水质数据集。所呈现的数据集共包含211,322个数据点,这些数据点被分成6个CSV文件。然后使用长短期记忆(LSTM)算法对数据集进行评估,均方误差(MSE)为0.0012256,均方根误差(RMSE)为0.0350080。拟议的数据集为研究河流生态系统的研究人员提供了有价值的见解,支持明智的决策和可持续的水管理实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atomic Data and Nuclear Data Tables
Atomic Data and Nuclear Data Tables 物理-物理:核物理
CiteScore
4.50
自引率
11.10%
发文量
27
审稿时长
47 days
期刊介绍: Atomic Data and Nuclear Data Tables presents compilations of experimental and theoretical information in atomic physics, nuclear physics, and closely related fields. The journal is devoted to the publication of tables and graphs of general usefulness to researchers in both basic and applied areas. Extensive ... click here for full Aims & Scope Atomic Data and Nuclear Data Tables presents compilations of experimental and theoretical information in atomic physics, nuclear physics, and closely related fields. The journal is devoted to the publication of tables and graphs of general usefulness to researchers in both basic and applied areas. Extensive and comprehensive compilations of experimental and theoretical results are featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信