Mechanisms of Changing the Conductivity of Porous Silicon in an Ammonia Atmosphere – DFT Modeling

F. Ptashchenko
{"title":"Mechanisms of Changing the Conductivity of Porous Silicon in an Ammonia Atmosphere – DFT Modeling","authors":"F. Ptashchenko","doi":"10.21272/jnep.12(3).03008","DOIUrl":null,"url":null,"abstract":"Based on quantum-chemical calculations by the density functional theory (DFT) method, four possible mechanisms of the influence of ammonia vapors on the conductivity of silicon nanostructures, in particular, porous silicon (PS), were examined. The first mechanism involves the emergence of donor states in the interaction of NH3 molecules with pb-centers (surface Si atoms with dangling bonds). The change in conductivity by the second and third mechanisms can occur in p-type silicon structures. The second mechanism involves the protonation of an ammonia molecule with the subsequent passivation of subsurface impurity boron atoms by NH4 ions. The third mechanism combines the first two. At the first stage, it involves the interaction of NH3 molecules with passivated B-pb-center pairs. After protonation of the NH3 molecule, the boron impurity atom is already passivated by the NH4 ion, and the paramagnetic state of the pb-center is restored. At the second stage, the formation of donor states occurs during the interaction of NH3 molecules with already paramagnetic pb-centers. The processes according to the fourth mechanism can occur in n-type silicon structures. It provides for the restoration of donor properties of surface phosphorus atoms passivated by two hydrogen atoms. Such a restoration occurs after protonation of the NH3 molecule, when the proton (the ion of the surface hydrogen atom) is separated from the phosphorus atom. The last three models involve the protonation of NH3 molecules with the necessary participation of water molecules and surface OHgroups, the important role of which has been demonstrated in most experimental studies.","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"114 1","pages":"03008-1-03008-7"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano- and Electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.12(3).03008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Based on quantum-chemical calculations by the density functional theory (DFT) method, four possible mechanisms of the influence of ammonia vapors on the conductivity of silicon nanostructures, in particular, porous silicon (PS), were examined. The first mechanism involves the emergence of donor states in the interaction of NH3 molecules with pb-centers (surface Si atoms with dangling bonds). The change in conductivity by the second and third mechanisms can occur in p-type silicon structures. The second mechanism involves the protonation of an ammonia molecule with the subsequent passivation of subsurface impurity boron atoms by NH4 ions. The third mechanism combines the first two. At the first stage, it involves the interaction of NH3 molecules with passivated B-pb-center pairs. After protonation of the NH3 molecule, the boron impurity atom is already passivated by the NH4 ion, and the paramagnetic state of the pb-center is restored. At the second stage, the formation of donor states occurs during the interaction of NH3 molecules with already paramagnetic pb-centers. The processes according to the fourth mechanism can occur in n-type silicon structures. It provides for the restoration of donor properties of surface phosphorus atoms passivated by two hydrogen atoms. Such a restoration occurs after protonation of the NH3 molecule, when the proton (the ion of the surface hydrogen atom) is separated from the phosphorus atom. The last three models involve the protonation of NH3 molecules with the necessary participation of water molecules and surface OHgroups, the important role of which has been demonstrated in most experimental studies.
氨环境下多孔硅电导率变化的机理- DFT模型
基于密度泛函理论(DFT)方法的量子化学计算,研究了氨蒸气对硅纳米结构,特别是多孔硅(PS)电导率的四种可能影响机制。第一种机制涉及NH3分子与pb中心(具有悬空键的表面Si原子)相互作用中供体态的出现。第二和第三种机制的电导率变化可以发生在p型硅结构中。第二种机制涉及氨分子的质子化和随后的表面下杂质硼原子被NH4离子钝化。第三种机制结合了前两种机制。在第一阶段,它涉及NH3分子与钝化的b- pb中心对的相互作用。NH3分子质子化后,硼杂质原子已被NH4离子钝化,pb中心恢复顺磁状态。在第二阶段,NH3分子与已经具有顺磁性的pb-中心相互作用时形成给体态。根据第四种机制的过程可以发生在n型硅结构中。它提供了两个氢原子钝化表面磷原子的施主性质的恢复。这种恢复发生在NH3分子质子化之后,当质子(表面氢原子的离子)与磷原子分离时。后三种模式涉及NH3分子的质子化,水分子和表面oh基团的参与是必要的,其重要作用已被大多数实验研究证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信