Homological polynomial coefficients and the twist number of alternating surface links

IF 0.6 3区 数学 Q3 MATHEMATICS
David A. Will
{"title":"Homological polynomial coefficients and the twist number of alternating surface links","authors":"David A. Will","doi":"10.2140/agt.2022.22.3939","DOIUrl":null,"url":null,"abstract":"For $D$ a reduced alternating surface link diagram, we bound the twist number of $D$ in terms of the coefficients of a polynomial invariant. To this end, we introduce a generalization of the homological Kauffman bracket defined by Krushkal. Combined with work of Futer, Kalfagianni, and Purcell, this yields a bound for the hyperbolic volume of a class of alternating surface links in terms of these coefficients.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"43 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2022.22.3939","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

For $D$ a reduced alternating surface link diagram, we bound the twist number of $D$ in terms of the coefficients of a polynomial invariant. To this end, we introduce a generalization of the homological Kauffman bracket defined by Krushkal. Combined with work of Futer, Kalfagianni, and Purcell, this yields a bound for the hyperbolic volume of a class of alternating surface links in terms of these coefficients.
同调多项式系数与交变曲面连杆的扭数
对于一个简化的交替曲面连接图,我们用多项式不变量的系数来约束D$的扭数。为此,我们引入了Krushkal定义的同调Kauffman括号的推广。结合Futer, Kalfagianni和Purcell的工作,这就产生了一类交替曲面连杆的双曲体积的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信