ML5 alloy structure and properties at different modification methods

B. Bobryshev, V. Moiseev, I. A. Kipin, I. A. Petrov
{"title":"ML5 alloy structure and properties at different modification methods","authors":"B. Bobryshev, V. Moiseev, I. A. Kipin, I. A. Petrov","doi":"10.17073/0021-3438-2019-4-23-29","DOIUrl":null,"url":null,"abstract":"A factor exerting a decisive influence on the complex of mechanical, technological and operational properties when making castings of magnesium alloys with a wide crystallization range is the casting structure. It is impossible to obtain a required structure of Mg— Al—Zn alloys without melt modification in the melting process. The paper provides the results obtained when studying the process of ML5 magnesium alloy modification with various substances. The influence of 0,4—0,45 wt.% magnesite introduced in the melt at a temperature of 720—740 °C was studied, as well as the influence of melt purging with oxygen-free carboniferous gases at the same temperature on the structure of the obtained alloy and the time of modification effect retention. The latter is especially important in large-lot and mass production of small Mg—Al—Zn—Mn alloy castings for a long time when melt pouring into molds takes considerable time. It is shown that oxygen-free carboniferous gases used for ML5 alloy modification ensure mechanical properties of castings 15 — 20 % higher than the standard level according to GOST 2856-79. The efficiency of retaining the effect of modification using the standard method (magnesite) and with oxygen-free carboniferous gases is compared. It is shown that the effect of modification with magnesite remains within no more than 30—40 minutes, while the effect of modification with oxygen-free carboniferous gas remains not less than 4 hours that enables long pouring of alloy into molds.","PeriodicalId":14523,"journal":{"name":"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vuzov Tsvetnaya Metallurgiya (Proceedings of Higher Schools Nonferrous Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0021-3438-2019-4-23-29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A factor exerting a decisive influence on the complex of mechanical, technological and operational properties when making castings of magnesium alloys with a wide crystallization range is the casting structure. It is impossible to obtain a required structure of Mg— Al—Zn alloys without melt modification in the melting process. The paper provides the results obtained when studying the process of ML5 magnesium alloy modification with various substances. The influence of 0,4—0,45 wt.% magnesite introduced in the melt at a temperature of 720—740 °C was studied, as well as the influence of melt purging with oxygen-free carboniferous gases at the same temperature on the structure of the obtained alloy and the time of modification effect retention. The latter is especially important in large-lot and mass production of small Mg—Al—Zn—Mn alloy castings for a long time when melt pouring into molds takes considerable time. It is shown that oxygen-free carboniferous gases used for ML5 alloy modification ensure mechanical properties of castings 15 — 20 % higher than the standard level according to GOST 2856-79. The efficiency of retaining the effect of modification using the standard method (magnesite) and with oxygen-free carboniferous gases is compared. It is shown that the effect of modification with magnesite remains within no more than 30—40 minutes, while the effect of modification with oxygen-free carboniferous gas remains not less than 4 hours that enables long pouring of alloy into molds.
ML5合金在不同改性方法下的组织和性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信