Riemannian Submersions with Quarter- Symmetric Non-Metric Connection

Hakan Demir, R. Sarı
{"title":"Riemannian Submersions with Quarter- Symmetric Non-Metric Connection","authors":"Hakan Demir, R. Sarı","doi":"10.30931/JETAS.910481","DOIUrl":null,"url":null,"abstract":"In this paper, we study Riemannian submersions from a Riemannian manifold endowed with a quarter-symmetric non-metric connection onto a Riemannian manifold. We investigate O’Neill’s tensor fields for quarter-symmetric non-metric connection and derive the covariant derivative of O’Neill’s tensor fields. We obtain derivatives of those tensor fields and compare curvatures of the total manifold, the base manifold, and the fibers by computing curvatures.","PeriodicalId":7757,"journal":{"name":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30931/JETAS.910481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we study Riemannian submersions from a Riemannian manifold endowed with a quarter-symmetric non-metric connection onto a Riemannian manifold. We investigate O’Neill’s tensor fields for quarter-symmetric non-metric connection and derive the covariant derivative of O’Neill’s tensor fields. We obtain derivatives of those tensor fields and compare curvatures of the total manifold, the base manifold, and the fibers by computing curvatures.
具有四分之一对称非度量连接的黎曼淹没
本文研究了具有四分之一对称非度量连接的黎曼流形在黎曼流形上的黎曼淹没。研究了四分之一对称非度量连接的O’neill张量场,导出了O’neill张量场的协变导数。我们得到了这些张量场的导数,并通过计算曲率比较了总流形、基流形和纤维的曲率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信