A fully intraocular 0.0169mm2/pixel 512-channel self-calibrating epiretinal prosthesis in 65nm CMOS

M. Monge, M. Raj, M. H. Nazari, Jay Han-Chieh Chang, Yu Zhao, J. Weiland, M. Humayun, Y. Tai, A. Emami-Neyestanak
{"title":"A fully intraocular 0.0169mm2/pixel 512-channel self-calibrating epiretinal prosthesis in 65nm CMOS","authors":"M. Monge, M. Raj, M. H. Nazari, Jay Han-Chieh Chang, Yu Zhao, J. Weiland, M. Humayun, Y. Tai, A. Emami-Neyestanak","doi":"10.1109/ISSCC.2013.6487742","DOIUrl":null,"url":null,"abstract":"Since their conception and success in human trials, the flexibility and spatial resolution of retinal prostheses have been of major interest. Clinical studies have revealed that hundreds of channels are needed to restore functional visual perception, and more sophisticated waveforms present advantages over biphasic pulses. Initial designs targeted stimulation current levels up to 1mA to ensure functionality. For such designs, an output compliance of >10V was required, and HV technologies were used at the expense of area and power consumption. Human clinical trials have recently shown that implanted electrodes present a stimulus threshold as low as 50μA. In addition, advances in implant technology promise close placement of electrode array and retinal tissue, which can further decrease the required current. Thus, highly scaled LV technologies can provide alternative means to reduce area and power, and to support hundreds of flexible independent channels for fully intraocular implants. In this paper, a self-calibrating 512-channel epiretinal prosthesis in 65nm CMOS is presented. It features dual-band telemetry for power and data, clock recovery, a 2-step calibration technique to match biphasic stimulation currents, and an independent arbitrary output waveform per channel. The implant integrates coils (power and data), IC, external capacitors and electrode array using a biocompatible parylene substrate, providing a fully intraocular solution.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"14 1","pages":"296-297"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2013.6487742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Since their conception and success in human trials, the flexibility and spatial resolution of retinal prostheses have been of major interest. Clinical studies have revealed that hundreds of channels are needed to restore functional visual perception, and more sophisticated waveforms present advantages over biphasic pulses. Initial designs targeted stimulation current levels up to 1mA to ensure functionality. For such designs, an output compliance of >10V was required, and HV technologies were used at the expense of area and power consumption. Human clinical trials have recently shown that implanted electrodes present a stimulus threshold as low as 50μA. In addition, advances in implant technology promise close placement of electrode array and retinal tissue, which can further decrease the required current. Thus, highly scaled LV technologies can provide alternative means to reduce area and power, and to support hundreds of flexible independent channels for fully intraocular implants. In this paper, a self-calibrating 512-channel epiretinal prosthesis in 65nm CMOS is presented. It features dual-band telemetry for power and data, clock recovery, a 2-step calibration technique to match biphasic stimulation currents, and an independent arbitrary output waveform per channel. The implant integrates coils (power and data), IC, external capacitors and electrode array using a biocompatible parylene substrate, providing a fully intraocular solution.
一种全眼内0.0169mm2/pixel 512通道自校准的65nm CMOS视网膜假体
自从他们的概念和成功的人体试验,视网膜假体的灵活性和空间分辨率一直是主要的兴趣。临床研究表明,恢复功能性视觉知觉需要数百个通道,更复杂的波形比双相脉冲更有优势。最初的设计目标是刺激电流水平高达1mA,以确保功能。对于这样的设计,需要>10V的输出合规性,并且以牺牲面积和功耗为代价使用高压技术。人体临床试验最近表明,植入电极的刺激阈值低至50μA。此外,植入技术的进步使电极阵列和视网膜组织的紧密放置成为可能,这可以进一步降低所需的电流。因此,高度规模化的LV技术可以提供减少面积和功率的替代方法,并为全眼内植入物提供数百个灵活的独立通道。本文提出了一种自校准的512通道65nm CMOS视网膜假体。它具有双频遥测电源和数据、时钟恢复、两步校准技术以匹配双相刺激电流,以及每个通道独立的任意输出波形。植入物集成线圈(电源和数据)、IC、外部电容器和电极阵列,使用生物相容性的聚对二甲苯基板,提供完全的眼内解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信