I. K. Ejiogu, U. Ibeneme, M. O. Aiyejagbara, David Oyemachi
{"title":"Pyrolysis of Waste Plastics as an Effective Tool in Sustainable Environmental Waste Management","authors":"I. K. Ejiogu, U. Ibeneme, M. O. Aiyejagbara, David Oyemachi","doi":"10.11648/J.MC.20210902.11","DOIUrl":null,"url":null,"abstract":"High utilization of plastics in the society today have caused the presence of substantial quantity of waste plastics in the environment. The menace of these waste plastics in the environment leaves much to be desired. The negative impact of waste plastics in our society cannot be overemphasized. There is need to develop an efficient and cost effective method to manage waste plastics because traditional method such as recycling have been unsuccessful. Some of the disadvantages in recycling include inefficient method of sorting, time consuming, labour intensive, high demand for water and environmental pollution. Therefore, there is need to develop a more efficient and effective method to manage waste plastics. Waste to energy concept through pyrolysis has been identified as a very innovative method of managing these waste plastics. Through research it has been identified that oil from waste plastics through pyrolytic processes tend to have high calorific value and could be used as alternative fuel. This work explored a detailed review on the pyrolytic breakdown of waste plastics through thermal and catalytic degradation and factors that play a critical role in these processes. The end products after pyrolytic breakdown are oil, gaseous materials, and char. The most effective way of controlling the factors for the pyrolytic degradation of the waste plastic that will give optimal fuel production and increase yield for each kilogram of waste plastic was also an area of interest covered in this work.","PeriodicalId":18605,"journal":{"name":"Modern Chemistry & Applications","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Chemistry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.MC.20210902.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
High utilization of plastics in the society today have caused the presence of substantial quantity of waste plastics in the environment. The menace of these waste plastics in the environment leaves much to be desired. The negative impact of waste plastics in our society cannot be overemphasized. There is need to develop an efficient and cost effective method to manage waste plastics because traditional method such as recycling have been unsuccessful. Some of the disadvantages in recycling include inefficient method of sorting, time consuming, labour intensive, high demand for water and environmental pollution. Therefore, there is need to develop a more efficient and effective method to manage waste plastics. Waste to energy concept through pyrolysis has been identified as a very innovative method of managing these waste plastics. Through research it has been identified that oil from waste plastics through pyrolytic processes tend to have high calorific value and could be used as alternative fuel. This work explored a detailed review on the pyrolytic breakdown of waste plastics through thermal and catalytic degradation and factors that play a critical role in these processes. The end products after pyrolytic breakdown are oil, gaseous materials, and char. The most effective way of controlling the factors for the pyrolytic degradation of the waste plastic that will give optimal fuel production and increase yield for each kilogram of waste plastic was also an area of interest covered in this work.