Biharmonic nonlinear scalar field equations

Jarosław Mederski, Jakub Siemianowski
{"title":"Biharmonic nonlinear scalar field equations","authors":"Jarosław Mederski, Jakub Siemianowski","doi":"10.5445/IR/1000135513","DOIUrl":null,"url":null,"abstract":"We prove a Brezis-Kato-type regularity result for weak solutions to the biharmonic nonlinear\r\nequation $$\\Delta^2u=g(x,u)\\qquad\\text{ in }\\mathbb{R}^N$$ with a Caratheodory function $g:\\mathbb{R}^N\\times\\mathbb{R}\\to\\mathbb{R}$, $N\\ge5$. The regularity results give rise to the existence of ground state solutions provided that g has a general subcritical growth at infinity. We also conceive a newbiharmonic logarithmic Sobolev inequality\r\n$$\\int_{\\mathbb{R}^N}|u|^2\\log|u|\\,dx \\le \\frac{N}{8}\\log\\left(C\\int_{\\mathbb{R}^N}|\\Delta u|^2\\,dx\\right), \\quad\\text{ for } u\\in H^2(\\mathbb{R}^N), \\int_{\\mathbb{R}^N}u^2\\,dx=1,$$\r\nfor a constant $0<C<\\left(\\frac{2}{\\pi e N}\\right)^2$ and we characterize its minimizers.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000135513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We prove a Brezis-Kato-type regularity result for weak solutions to the biharmonic nonlinear equation $$\Delta^2u=g(x,u)\qquad\text{ in }\mathbb{R}^N$$ with a Caratheodory function $g:\mathbb{R}^N\times\mathbb{R}\to\mathbb{R}$, $N\ge5$. The regularity results give rise to the existence of ground state solutions provided that g has a general subcritical growth at infinity. We also conceive a newbiharmonic logarithmic Sobolev inequality $$\int_{\mathbb{R}^N}|u|^2\log|u|\,dx \le \frac{N}{8}\log\left(C\int_{\mathbb{R}^N}|\Delta u|^2\,dx\right), \quad\text{ for } u\in H^2(\mathbb{R}^N), \int_{\mathbb{R}^N}u^2\,dx=1,$$ for a constant $0
双调和非线性标量场方程
我们证明了具有卡拉多函数$g:\mathbb{R}^N\times\mathbb{R}\to\mathbb{R}$, $N\ge5$的双调和非线性方程$$\Delta^2u=g(x,u)\qquad\text{ in }\mathbb{R}^N$$弱解的一个brezis - kato型正则性结果。如果g在无穷远处具有一般的亚临界增长,则正则性结果可以得到基态解的存在性。对于常数$0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信