{"title":"Biharmonic nonlinear scalar field equations","authors":"Jarosław Mederski, Jakub Siemianowski","doi":"10.5445/IR/1000135513","DOIUrl":null,"url":null,"abstract":"We prove a Brezis-Kato-type regularity result for weak solutions to the biharmonic nonlinear\r\nequation $$\\Delta^2u=g(x,u)\\qquad\\text{ in }\\mathbb{R}^N$$ with a Caratheodory function $g:\\mathbb{R}^N\\times\\mathbb{R}\\to\\mathbb{R}$, $N\\ge5$. The regularity results give rise to the existence of ground state solutions provided that g has a general subcritical growth at infinity. We also conceive a newbiharmonic logarithmic Sobolev inequality\r\n$$\\int_{\\mathbb{R}^N}|u|^2\\log|u|\\,dx \\le \\frac{N}{8}\\log\\left(C\\int_{\\mathbb{R}^N}|\\Delta u|^2\\,dx\\right), \\quad\\text{ for } u\\in H^2(\\mathbb{R}^N), \\int_{\\mathbb{R}^N}u^2\\,dx=1,$$\r\nfor a constant $0<C<\\left(\\frac{2}{\\pi e N}\\right)^2$ and we characterize its minimizers.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000135513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We prove a Brezis-Kato-type regularity result for weak solutions to the biharmonic nonlinear
equation $$\Delta^2u=g(x,u)\qquad\text{ in }\mathbb{R}^N$$ with a Caratheodory function $g:\mathbb{R}^N\times\mathbb{R}\to\mathbb{R}$, $N\ge5$. The regularity results give rise to the existence of ground state solutions provided that g has a general subcritical growth at infinity. We also conceive a newbiharmonic logarithmic Sobolev inequality
$$\int_{\mathbb{R}^N}|u|^2\log|u|\,dx \le \frac{N}{8}\log\left(C\int_{\mathbb{R}^N}|\Delta u|^2\,dx\right), \quad\text{ for } u\in H^2(\mathbb{R}^N), \int_{\mathbb{R}^N}u^2\,dx=1,$$
for a constant $0