Don’t Hit Me! Glass Detection in Real-World Scenes

Haiyang Mei, Xin Yang, Yang Wang, Yu-An Liu, Shengfeng He, Qiang Zhang, Xiaopeng Wei, Rynson W. H. Lau
{"title":"Don’t Hit Me! Glass Detection in Real-World Scenes","authors":"Haiyang Mei, Xin Yang, Yang Wang, Yu-An Liu, Shengfeng He, Qiang Zhang, Xiaopeng Wei, Rynson W. H. Lau","doi":"10.1109/cvpr42600.2020.00374","DOIUrl":null,"url":null,"abstract":"Glass is very common in our daily life. Existing computer vision systems neglect it and thus may have severe consequences, e.g., a robot may crash into a glass wall. However, sensing the presence of glass is not straightforward. The key challenge is that arbitrary objects/scenes can appear behind the glass, and the content within the glass region is typically similar to those behind it. In this paper, we propose an important problem of detecting glass from a single RGB image. To address this problem, we construct a large-scale glass detection dataset (GDD) and design a glass detection network, called GDNet, which explores abundant contextual cues for robust glass detection with a novel large-field contextual feature integration (LCFI) module. Extensive experiments demonstrate that the proposed method achieves more superior glass detection results on our GDD test set than state-of-the-art methods fine-tuned for glass detection.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"97 1","pages":"3684-3693"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

Glass is very common in our daily life. Existing computer vision systems neglect it and thus may have severe consequences, e.g., a robot may crash into a glass wall. However, sensing the presence of glass is not straightforward. The key challenge is that arbitrary objects/scenes can appear behind the glass, and the content within the glass region is typically similar to those behind it. In this paper, we propose an important problem of detecting glass from a single RGB image. To address this problem, we construct a large-scale glass detection dataset (GDD) and design a glass detection network, called GDNet, which explores abundant contextual cues for robust glass detection with a novel large-field contextual feature integration (LCFI) module. Extensive experiments demonstrate that the proposed method achieves more superior glass detection results on our GDD test set than state-of-the-art methods fine-tuned for glass detection.
别打我!真实世界场景中的玻璃检测
玻璃在我们的日常生活中很常见。现有的计算机视觉系统忽视了这一点,因此可能会产生严重的后果,例如,机器人可能会撞到玻璃墙上。然而,感知玻璃的存在并不简单。关键的挑战在于,任意物体/场景都可能出现在玻璃后面,而玻璃区域内的内容通常与玻璃后面的内容相似。在本文中,我们提出了一个重要的问题,即从单个RGB图像中检测玻璃。为了解决这个问题,我们构建了一个大规模的玻璃检测数据集(GDD),并设计了一个名为GDNet的玻璃检测网络,该网络通过一种新颖的大视场上下文特征集成(LCFI)模块探索了丰富的上下文线索,用于稳健的玻璃检测。大量的实验表明,所提出的方法在我们的GDD测试集上实现了比最先进的玻璃检测方法更优越的玻璃检测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信