SemiHand: Semi-supervised Hand Pose Estimation with Consistency

Linlin Yang, Shicheng Chen, Angela Yao
{"title":"SemiHand: Semi-supervised Hand Pose Estimation with Consistency","authors":"Linlin Yang, Shicheng Chen, Angela Yao","doi":"10.1109/ICCV48922.2021.01117","DOIUrl":null,"url":null,"abstract":"We present SemiHand, a semi-supervised framework for 3D hand pose estimation from monocular images. We pre-train the model on labelled synthetic data and fine-tune it on unlabelled real-world data by pseudo-labeling with consistency training. By design, we introduce data augmentation of differing difficulties, consistency regularizer, label correction and sample selection for RGB-based 3D hand pose estimation. In particular, by approximating the hand masks from hand poses, we propose a cross-modal consistency and leverage semantic predictions to guide the predicted poses. Meanwhile, we introduce pose registration as label correction to guarantee the biomechanical feasibility of hand bone lengths. Experiments show that our method achieves a favorable improvement on real-world datasets after fine-tuning.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"15 1","pages":"11344-11353"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.01117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We present SemiHand, a semi-supervised framework for 3D hand pose estimation from monocular images. We pre-train the model on labelled synthetic data and fine-tune it on unlabelled real-world data by pseudo-labeling with consistency training. By design, we introduce data augmentation of differing difficulties, consistency regularizer, label correction and sample selection for RGB-based 3D hand pose estimation. In particular, by approximating the hand masks from hand poses, we propose a cross-modal consistency and leverage semantic predictions to guide the predicted poses. Meanwhile, we introduce pose registration as label correction to guarantee the biomechanical feasibility of hand bone lengths. Experiments show that our method achieves a favorable improvement on real-world datasets after fine-tuning.
半手:具有一致性的半监督手姿态估计
我们提出了一个半监督框架,用于单目图像的三维手部姿态估计。我们在标记的合成数据上预训练模型,并通过一致性训练的伪标记对未标记的真实数据进行微调。通过设计,我们引入了基于rgb的三维手部姿态估计的不同难度的数据增强、一致性正则化器、标签校正和样本选择。特别是,通过手部姿势近似手部面具,我们提出了一种跨模态一致性,并利用语义预测来指导预测的姿势。同时引入位姿配准作为标签校正,保证了手骨长度的生物力学可行性。实验表明,经过微调后,我们的方法在真实数据集上取得了良好的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信