Dynamics of a link-type independent adaptive epidemic model

A. Szabó
{"title":"Dynamics of a link-type independent adaptive epidemic model","authors":"A. Szabó","doi":"10.7153/DEA-09-09","DOIUrl":null,"url":null,"abstract":"A link-type-independent adaptive network model of SIS epidemic propagation is considered. In the model links can be activated or deleted randomly regardless to the type of nodes. A four-variable pairwise ODE approximation is used to describe how the number of quantities such as number of infected nodes evolves in time. In order to investigate bifurcations in the model an invariant manifold is defined. Using the theory of asymptotically autonomous systems, results obtained for the reduced system on the manifold are extended to the full pairwise model and a non-oscillating behaviour is proven.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"10 1","pages":"105-122"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-09-09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A link-type-independent adaptive network model of SIS epidemic propagation is considered. In the model links can be activated or deleted randomly regardless to the type of nodes. A four-variable pairwise ODE approximation is used to describe how the number of quantities such as number of infected nodes evolves in time. In order to investigate bifurcations in the model an invariant manifold is defined. Using the theory of asymptotically autonomous systems, results obtained for the reduced system on the manifold are extended to the full pairwise model and a non-oscillating behaviour is proven.
链接型独立自适应流行病模型的动力学
研究了一种与链路类型无关的SIS流行病传播自适应网络模型。在模型中,无论节点的类型如何,都可以随机激活或删除链接。使用四变量成对ODE近似来描述数量(如感染节点的数量)如何随时间演变。为了研究模型中的分岔,定义了一个不变流形。利用渐近自治系统理论,将流形上的约简系统的结果推广到完全配对模型,并证明了该系统的非振荡特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信